BETWAY必威·(中国)官方网址
生物燃料的必威 betway必威优缺点十篇
发布:2024-03-22 01:52:57 浏览:

  汽车作为现代重化工业技术体系的代表产品,不仅是不可再生石油资源的主要消耗者,而且也是造成城市空气污染的主要祸首。汽车所排放的尾气中含有大量NOX(氮氧化物)、CO(一氧化碳)、PM(颗粒物)和HC(碳氢化合物)等有害物质,对城市大气环境造成了严重的污染和破坏。解决汽车的环境污染和石油的短缺问题需要寻找可替代石油燃料的洁净能源或改变传统的内燃机技术。然而,由于方法众多,每一种方法都存在各自的优缺点,众说纷纭,争执不下。究竟哪一种新能源适合我国汽车未来能源的发展方向呢?

  我们认为,内燃机技术以及汽车产业在产业技术体系中占有核心地位,从整个产业技术体系的发展战略角度出发,分析现有的汽车各种替代能源的优缺点,分阶段实施汽车新能源的发展战略,对于我国实现产业技术的跨越发展具有十分重要的现实意义。

  目前,可代替传统汽油和柴油的汽车代用能源有许多种,可将其归纳为三类:第一类是不可再生能源,包括液化石油气、天然气、煤基液体燃料、甲醇;第二类是可再生能源,包括乙醇、生物柴油、太阳能;第三类是性质不确定能源,其性质的归属取决于生产该能源的原料,包括燃料电池、电能和氢能。

  (1)液化石油气(LPG)。LPG分为石油炼制过程中的副产品和油田伴生气两种。

  LPG的缺点:能量密度低;车用LPG的质量要求较高,需要提纯处理;存在一定的爆燃危险性,安全性较差;仍然以石油资源为依托,属于不可再生资源。

  (2)天然气(NG)。汽车使用的天然气按储存方式主要分:压缩天然气(CNG )、液化天然气(LNG)和吸附天然气(ANG)三种。

  ①压缩天然气(CNG)。CNG是将常态下的天然气以20MPa以上压力压缩在高压罐内供汽车使用。

  CNG的优点:污染排放低。天然气汽车尾气中NOX及CO2排放量很低,且无PM固体微粒排放;工艺简单。供汽车使用的CNG是用压缩机将天然气压缩储存,燃烧时通过减压装置减压释放,工艺比较简单;天然气储量相对丰富。我国目前天然气资源量约为54万亿立方米,探明的天然气地质储量为3.9万亿立方米,资源探明率为7.2%。并且,天然气的勘探潜力很大,储量较石油丰富。

  CNG的缺点:存储体积较大,能量密度低;汽车充气时间较长,一次行驶里程短;储气钢瓶因压力大,有一定的危险性;车用充气源受天然气管网限制;属不可再生资源。

  ②液化天然气(LNG)。LNG是将天然气在-161℃的低温下液化,并进行净化处理而成。

  LNG的优点:更洁净环保。LNG燃尽后无灰渣和焦油,主要排放物是二氧化碳和水蒸气,NO2、CO2等有害物质的含量极少;能量密度大。LNG液化后的体积仅是原气态体积的1/625,能量密度高于CNG三倍多;安全性能好。LNG无需高压,不易自燃自爆,安全性能好;车用充气源不受天然气管网限制;具有循环利用能源效应。LNG在汽化至常态过程中将释放出大量的冷能,可回收用于汽车空调或汽车冷藏。

  LNG的缺点:生产与运输成本较高。LNG是在低温下液化、缩小体后装入特殊运输设备运送到目的地,并再次气化后方可使用。因此,LNG在中短途运输方面成本过高。属不可再生资源。

  ③吸附天然气(ANG)。吸附储气的原理是在储气容器中以特殊方法装填超级活性炭作为吸附剂。利用吸附剂表面分子与气体之间的作用力吸附气体分子。

  ANG的优点:储存压力低。ANG的压力一般只有4~6MPa,有利于安全;不必使用笨重的钢瓶,减少储气设备重量。

  (3)煤基液体燃料。煤基液体燃料是将煤炭通过直接或间接方法液化成液体燃料油,俗称“煤变油”。

  煤基液体燃料的缺点:煤变成液态燃料单位成本高;煤转化成液态燃料的生产过程中要消耗大量的能源;煤变油技术仅是将一种不可再生能源转化为另一种形式,不符合能源发展方向;煤变成液体燃料只是将煤炭转变为汽油、柴油,依然不能降低环境污染。

  (4)甲醇。甲醇是一种含氧化合物,溶解性强,可与汽油、柴油溶解混合为新型燃料。甲醇可从煤、天然气和油页岩中制取。

  甲醇的优点:甲醇作为燃料具有辛烷值高、汽化潜热大、热值较低等特点;作为车用燃料,甲醇的CO、HC和NOx排放较汽油和柴油低,几乎无碳烟排放;溶解性好,可与汽油、柴油混合使用。

  甲醇的缺点:对环境即有正面影响也有负面影响。甲醇汽油可以减少尾气中CO、CH、NOx排放,但尾气中总醛排放增加;甲醇具有毒性。人摄入5~10毫升就会发生急性中毒,30毫升即可致死;甲醇对金属有腐蚀作用,对橡胶皮革有溶胀作用;制取甲醇要消耗不可再生资源。

  (1)乙醇。乙醇是玉米、小麦、薯类、高粱、甘蔗、甜菜等经发酵、蒸馏、脱水后再在其中加入变性剂而成。车用乙醇汽油是将燃料乙醇和组分汽油按一定比例混配而成。

  乙醇的优点:减少污染。使用乙醇汽油的汽车尾气中CO降低30%,NOX减少10%,苯系物质、氮氧化物、酮类等污染物浓度明显降低;属可再生能源。

  乙醇的缺点:乙醇需要与汽油混合使用,不能成为汽油的完全替代品;燃烧乙醇会产生悬浮颗粒,不是完全的绿色燃料;消耗大量土地资源。

  (2)生物柴油。生物柴油是采用动物或植物油脂与甲醇(或乙醇)经酯交换反应而得到的脂肪酸甲(乙)酯,是一种可以替代石油柴油的可再生清洁燃料。

  生物柴油的优点:环保特性优良。根据美国科学家的研究结果,使用生物柴油可降低90%的空气毒性,二氧化碳排放要比柴油减少60%;车辆成本低。使用生物柴油的汽车与普通柴油车相同,车辆无须任何修改;安全性好。生物柴油的闪火点较高,毒性较低;是一种环境友好的可再生燃料。

  生物柴油的缺点:燃烧效果差。生物柴油的粘度约为#2石化柴油的12倍,影响喷射时程,导致喷射效果不佳。由于生物柴油的低挥发性,造成燃烧不完全,影响汽车燃烧效率;制取生物柴油的成本较高;消耗大量耕地资源。

  (3)太阳能。太阳能资源丰富,随处可得,无需运输,对环境无任何污染,是未来汽车能源的发展方向。

  目前,制约太阳能汽车发展的主要障碍:一是汽车的动力常受时间、地点、季节、气候影响;二是太阳能的采集与转换效率难以满足汽车高速行驶所需要的足够动力;三是太阳能电池板造价昂贵。

  (1)燃料电池。燃料电池是直接将储存在燃料和氧化剂中的化学能转化为电能的一种装置。燃料电池常用的燃料有氢、天然气、甲醇等,常用的氧化剂有氧气、空气。

  燃料电池的优点:洁净、污染低。纯氢和氧结合的燃料电池,可实现零放排。以甲醇、天然气为燃料的燃料电池汽车造成的大气污染仅为内燃机汽车的5%;燃料电池能量转换效率较高;噪音低。燃料电池属于静态能量转换装置,除了空气压缩机和冷却系统以外无其他运动部件,噪音小;燃料多样化。燃料电池所使用的燃料可以是氢、甲醇、天然气,也可以是丙烷、汽油、柴油、煤以及可再生能源;利用生物制氢、水制氢的燃料电池可实现能源再生化。

  燃料电池的缺点:成本高。质子交换膜电池中的膜材料和催化剂均十分昂贵;燃料的质量不过关。质子交换膜燃料电池必须使用没污染的氢燃料,而目前纯净氢的制取技术还存在困难。

  (2)电能。以电能为动力的汽车分为三种:纯电动汽车(BEV)、燃料电池电动汽车(FCV)和混合动力电动汽车(HEV)。纯电动汽车是指以车载蓄电池为电源,用电动机驱动的车(本文中的电动汽车指的是纯电动汽车)。

  电能是一种洁净能源,电动汽车完全可以实现零排放、无污染,但是,目前的电能还不属于可再生能源,主要是因为电能还有相当一部分是通过煤炭、石油等化石类能源转换而来。

  电动汽车的优点:洁净无污染。目前,只有电动汽车完全符合零排放,而且电动汽车噪音很低;电能是取之不尽、用之不竭的能源。如果用再生能源(太阳能、水能、风能、生物质能、潮汐)发电,电能可永续使用;电能的利用技术成熟。人类利用电能已有很长一段历史,遍布全国的电网可为电动汽车的充电带来极大的方便;电动汽车结构简单,维修方便。

  电动汽车的不足:电池性能还无法满足电动汽车产业化的要求。目前,电动汽车的蓄电池主要有:铅酸蓄电池、镍镉蓄电池、镍氢蓄电池、锂离子电池等。铅酸蓄电池比能量低,质量和体积太大,一次充电行驶里程较短,且寿命短,污染严重;镍镉蓄电池中的重金属镉对环境有污染;镍氢蓄电池有高温使用电荷量急剧下降的缺点;锂离子的问题是安全性和稳定性,此外,大功率锂电池存在技术难度;价格昂贵。蓄电池的价格是目前制约电动汽车产业化的障碍;电池充电时间长,蓄电能力有限;动力性差;电能还没有解决完全可再生和无污染问题。电能的生产还大量依赖煤炭、石油等不可再生资源,此外,汽车废弃蓄电池还有污染问题。

  (3)氢能。氢是自然界存在最普遍的元素,在自然界中多以化合物形态出现,主要贮存于水,特别是海水中富含大量的氢,石油、天然气、煤炭、动植物体也含氢。氢的发热值是所有燃料中最高的,而且燃点高,燃烧速度快,是十分优质的二次能源。以氢气为能源驱动汽车,主要有三种方法:汽车携带贮氢罐,以氢气在发动机中直接燃烧产生动力;汽车电池放电电解出氢作燃料;以氢作燃料电池的燃料,用电力驱动汽车。

  氢能的优点:氢是洁净能源。氢燃烧非常清洁,除生成水和少量氮化氢外不会产生其他对环境有害的污染物质;氢是高效燃料。每公斤氢燃烧产生的能量为33.6kW・h,是汽油的2.8倍;不需要对现有的技术装备作重大的改造。现在的内燃机稍加改装即可使用氢。

  氢能的缺点:廉价的制氢方法是氢能利用的一大障碍。目前,氢的制取需要大量能量,而且制氢效率很低;氢的安全性能差。氢气是一种无色无臭的气体,而且着火界限宽、着火能低、燃烧速度快,容易引发火灾及爆炸。此外,氢特别容易泄漏,加油站、管道和纯化工厂很难完全消除泄漏隐患。

  汽车产业在整个工业体系中占有核心地位,汽车新能源的发展战略不仅关系到汽车产业的可持续发展,而且对于整个工业的发展方向具有举足轻重的作用,因此,我们还需要从产业技术体系角度考虑汽车新能源的发展战略。

  产业技术体系是指在工业生产部门各个产业领域所使用的各种产业技术,因其生产过程中的必然联系而构成的统一的有机整体。产业技术体系中的产业技术因其在生产部门生产过程中的影响范围和程度不同而分为源技术、主干技术、旁支技术三个层次。其中,源技术是最核心的、最具影响力的技术,它决定整个工业部门产业技术体系的性质和本质特征,决定了工业部门内部其他产业部门核心技术的产生、变革和地位。而主干技术是在源技术之下,直接与源技术配套的工业部门内部各产业技术,它们只是对一个或几个工业部门有重大作用。而旁支技术则是为主干技术服务的、处于次要地位的各产业技术。

  人类历史上的历次产业技术革命都因产业技术体系中的源技术发生重大变革,推动产业技术体系中各层次的产业技术逐步改变,最终导致整个产业技术体系发生变革。第一次工业技术革命正是因蒸汽机的出现,导致人类生产的重心从农业转向工业;第二次工业技术革命由于内燃机和电力技术的发明,使人类生产走上了重化工业道路,也导致今天的资源危机和环境恶化;以微电子、新材料、新能源、生物工程、航天技术、海洋技术等为代表的第三次工业技术革命,并没有改变第二次工业技术革命所奠定的重化工业技术体系性质,却使消耗不可再生资源、污染环境的重化工业技术体系加速发展。今天,人类经济社会面临的生存危机,在本质上是产业技术体系性质造成的,是迄今为止历次产业技术革命都在产业技术开发与应用上忽视了人与自然的关系,从而导致产业技术体系各层次的产业技术都消耗不可再生资源、排放污染环境的废弃物造成的。

  当前的产业技术体系还属于重化工业技术体系。重化工业技术体系中的源技术――电力技术和内燃机具有消耗不可再生资源、破坏环境的性质,带动了汽车、钢铁、能源、化工、机械加工等主干技术以及旁支技术也具有同样的性质。因此,要实现人与自然和谐相处,必须从根本上针对重化工业技术体系的源技术――电力技术和内燃机进行革命。

  传统的内燃机是直接建立在石油、天然气等不可再生能源结构上的工业动力,是现代大工业各种产品生产的母机。汽车发动机是内燃机最突出的代表。汽车不仅是不可再生资源主要消耗者,也是城市环境恶化的主要元凶,此外,汽车产业更是在整个产业技术体系中关联最多的产业。因此,汽车洁净能源的开发应朝着改变传统的内燃机技术,使其由消耗不可再生资源、污染环境向使用可再生资源、对环境无害的方向发展,以推动整个产业技术体系向生态化变革,从而实现可持续发展的目标。因此,未来汽车的新能源应具备如下条件:

  第一,新能源必须是可再生资源。不可再生资源终究会枯竭,用较丰富资源替代紧张资源只能作为短期权宜之计。

  第二,新能源必须是洁净的。新能源不应对环境产生任何污染,应完全实现零排放。

  第三,新能源有利于变革传统的内燃机技术。变革传统的消耗不可再生资源的内燃机技术不仅对于汽车产业发展有利,也会推动整个产业技术体系向可持续发展的方向努力。

  综上所述,我们认为电能是汽车未来最佳的能源。但是,用电动机取代目前广为使用的传统内燃机不是一蹴而就的事情,因此,汽车新能源的发展战略还需要分阶段实施。

  选择电能作为汽车未来能源的理由是:第一,电能是完全洁净的能源,电动汽车完全可以实现零排放;第二,电能完全有可能转变为可再生能源。尽管目前电能还不是可再生能源,但是随着太阳能发电、风能发电、生物质能发电、潮汐发电等的普及,电能会迅速转变成可再生能源;第三,有利于产业技术体系变革。传统内燃机被电动机取代,将导致化工、石油、煤炭等行业逐步萎缩,而太阳能发电、风力发电、生物质能发电以及潮汐发电等产业将得到大力发展。层层推进,可推动整体产业技术体系发生变革,有望改变重化工业技术体系消耗不可再生资源、污染环境的本质。

  将燃料电池汽车作为中期发展目标的理由是:第一,燃料电池汽车技术已相当成熟,极有可能先于电动汽车进入市场。近几年,世界各大汽车公司都纷纷推出以氢或甲醇为燃料的燃料电池汽车;第二,燃料电池汽车有利于环境保护和节省能源。氢燃料电池可实现零排放,即使使用其他燃料(如甲醇)的燃料电池汽车也是常规汽车排放的30%。另外,燃料电池能效高有利于节省能源;第三,燃料电池完全可能实现由不可再生能源向可再生能源的转化。水解氢燃料电池可以实现资源的循环使用,因为氢与氧的燃烧产物就是水,水可以循环使用,取之不尽,用之不竭。另外,可利用太阳能、风能、潮汐能等可再生能源制氢,实现能源可再生化。目前,制约燃料电池成为可再生能源的是水解氢的制取技术,但是,甲醇等燃料电池技术的使用与推广,可为氢燃料电池的发展奠定良好的基础。第四,燃料电池汽车发动机是传统内燃机的变革,可为电动机最终取代传统内燃机提供经验。

  尽管,目前的甲醇燃料电池、通过煤或天然气制取氢的燃料电池与我们所倡导的能源的可再生化发展方向违背。但是,只要太阳能、风能、潮汐能发电技术、水解氢技术一旦成熟,燃料电池实现可再生能源的目标就十分容易。因此,我们将燃料电池作为中期发展目标。

  液化天然气(LNG)属不可再生资源,不符合能源的发展方向,也与我们的倡导的终极目标相悖。我们将其作为短期发展目标的理由是:第一,液化天然气有助于解决汽车尾气的严重污染问题。液化天然气与汽油、柴油相比,更洁净环保;第二,液化天然气有助于解决目前的石油紧张问题。我国的天然气储量较石油丰富,而且天然气的探明储量在不断增加。此外,使用液化天然气不受天然气管网限制,可充分利用世界天然气资源,这对于我国的能源安全有利;第三,液化天然气使用技术与现存的内燃机技术衔接较好。

  但是,天然气资源是不可再生资源,长期过量开发与使用将会导致与石油资源一样的命运。因此,发展液化天然气汽车只可作为短期发展战略。

  [1]赵学伟:关于我国发展燃气汽车的几点思考[J].国际石油经济,2005(7):46

  [2]李丹:我国能源问题解析:煤炭、石油与天然气[J].中国科技财富,2005(8):42~46

  [3]李昌珠蒋丽娟程树棋:生物柴油研究现状与商业化应用前景.中国生物质能技术研讨会论文集[C].南京:太阳能学会生物质能专业委员会,2002

  [5]赵儒煜杨振凯:从破坏到共生――东北产业技术体系变革道路研究[M].长春:吉林大学出版社,2004年12月第一版.第80页

  [6]黄海波:燃气汽车结构原理与维修[M].北京:机械工业出版社,2002年第1版,第30~39页

  对位芳纶纤维是对位芳香族聚酰胺纤维(聚对苯二甲酰对苯二胺),在我国称为芳纶1414,是一种合成的高分子材料,具有优良的物理机械性能、热稳定性、阻燃性、电绝缘性和耐辐射性。其优秀的耐高温阻燃性能表现在极限氧指数(LOI)可达30左右,玻璃化温度为345℃左右,高温不熔融,分解温度高达560℃,耐热性更胜芳纶1313一筹;芳纶1414的连续使用温度范围极宽,在-196℃至204℃范围内可长期正常运行,在150℃下的收缩率为0。由于其分子链沿长度方向高度取向,并且具有极强的链间结合力,从而赋予纤维空前的高强度、高模量,强度大于28克/旦,是优质钢材的5~6倍,模量是钢材或玻璃纤维的2~3倍,韧性是钢材的2倍,而重量仅为钢材的1/5。且具有良好的绝缘性和抗腐蚀性,生命周期很长,因而赢得“合成钢丝”的美誉。

  对位芳纶可单独使用,更多的应用于复合材料领域,虽然对位芳纶性能极其优越,但是产量少,价格昂贵,主要应用于宇航和国防工业,少量作为防弹衣、安全带之类的防护用。又由于其吸湿性差、遇热收缩阻碍了在个体防护领域的使用。

  目前市场上的阻燃产品主要是阻燃剂整理型阻燃防护服,这类服装耐水洗性差,而且只有克重超过300g/O厚重面料才能满足GB8965.1-2009《阻燃服》的强力要求,但是这样的面料穿着厚重,遇到高温出汗时湿重感更强,轻薄的阻燃面料强力达不到标准要求。

  鉴于对位芳纶优秀的机械性能和理化性能,在防护领域可以发挥其独特优点,避其缺点。保定三源纺织科技有限公司采用对位芳纶开发出本质阻燃、防静电、防止热收缩、防止燃烧破裂、舒适性好、强力高的新面料。本产品是以对位芳纶为骨架,以纤维素阻燃纤维为基础,根据不同要求配以防静电纤维或其他功能纤维。纤维素阻燃纤维为基础,满足产品舒适性,使其具有透气、吸湿,调节人体热量的功能;对位芳纶为骨架,满足织物的强力要求,因为对位芳纶有极高的强度,是不可替代的骨架材料。基材骨架的设计方案使产品遇到火焰有防止热收缩及燃烧破裂的特点,选用合理的配比可使防爆裂功能发挥到极限。再配以防静电纤维,使产品成为本质阻燃、防静电、舒适性好、强力高、价格低的新面料。

  保定三源纺织科技有限公司在生产适用于防护领域的高性能对位芳纶织物时,不断总结经验和改进工艺,使得产品质量和使用效果都能满足防护功能。根据纤维性能,结合织物用纱要求,对位芳纶织物纺纱工序的生产流程为:混棉-开棉-纤维预处理-梳棉-v条(3道)-粗纱-细纱-络筒-v纱-倍捻。

  必威 必威betway

  在纺纱工序,由于对位芳纶与纤维素阻燃纤维基材骨架的设计方案,大大提高了对位芳纶纤维的可纺性。在纺纱工序前,适当进行原料预处理,并增加纺纱车间的湿度,可以消除纤维间静电现象,使纺纱工序顺利进行。采用不同的质量比和纱线规格,使其各自优势在织物中进行互补,可以实现对位芳纶防护服的功能多样化,改善织物的穿着舒适性,降低产品价格。

  织造防护用对位芳纶织物,改善织物的综合性能,必须优先织造工艺。作为织物基材的纤维素阻燃纤维强度低,影响织物的物理性能,织造工序为了增加织物的强力,尤其是使撕破强力最大化,织物结构采用浮长线破斜纹织物组织和三厘格的组织结构。在服用机织物的实际穿着使用中,撕裂破坏性能更为重要,在《纺织材料学》关于织物撕破性能的开篇就指出:撕破强力比拉伸断裂强力更能反映织物的坚牢度。通过改变上机工艺,调整筘入数等参数,可以解决并根处经纱容易松弛,造成停经片下沉问题,通过改变引纬规律可消除并根处的纬缩疵点。

  从测试结果可以看出,对位芳纶织物无论是阻燃性能,还是理化性能均能满足防护要求,产品性能符合:GB8965.1-2009、EN ISO 11612-2008、CS-191标准要求。

  对位芳纶纤维具有优良的物理机械性能、热稳定性、阻燃性、电绝缘性和耐辐射性等优点,但也有价格昂贵、吸湿性差、遇热收缩等缺点。为了在防护领域发挥其独特优势,规避其不足之处,采用基材骨架的设计方案,寻求与纤维素阻燃纤维的协同效应,通过调整纺纱和织造工艺,可以获取均匀结构的对位芳纶织物。产品具有本质阻燃、防静电、防止热收缩、防止燃烧破裂、舒适性好、强力高、价格低等特点,各项性能指标优越,符合防护领域的严苛需求。对位芳纶将会在防护领域得到更广阔的发展与应用。

  (1)人均能源拥有量低、储备量低 我国能源相对稀缺,人均能源资源量远低于世界平均水平。

  2005年,我国石油表观消费量为3.2亿吨。2006年全球石油消费只增长了0.7%,但中国石油消费量增长近6.7%,接近过去10年的平均增长率。07年上半年,中国经济的高速增长推动了石油产量和消费量的双双攀升,预计全年石油表观消费量将达到3.7亿吨。根据分析,到2020年我国石油消费量将达到5.2-5.5亿吨。

  近10年来,中国石油消费量年均增长率达到7%左右,而国内石油供应年增长率仅为1.7%。这种供求矛盾使中国自1993年成为石油净进口国之后,2004年对外依存度迅速达到42%。2005-2020年期间,国内石油天然气产量远远不能满足需求,且供需缺口越来越大。主要表现在:受国内石油资源的限制,2010年中国石油进口量将达到2-2.4亿吨,2020年将增加到3.2-3.6亿吨,而成为世界第一大油品进口国。2010年后,中国石油对外依存度将超过60%,到2020年石油对外依存度将达到70%左右。

  截止2007年6月,中国机动车保有量为152,807,598辆。其中,汽车53,558,098辆,摩托车83,548,340辆,挂车800,345辆,上道路行驶的拖拉机14,880,466辆,其他机动车20,349辆。汽车耗油约占整个石油消费量的1/3,预计2020年中国汽车保有量将达1.5亿辆,石油消费比例将上升到57%。这些汽车将需要每天增加200万至300万桶石油供应。

  必威 必威betway

  对于汽车工业来说,替代能源的前途的确不可乐观。一段时间,人们寄希望于核能、太阳能和风能等替代能源。然而,实际上,核能利用同样需要石油,虽然产生同样数量的功率,核能利用使用的石油量小;核能利用伴随着巨大危险,而且处理核废弃物也是尚未解决的难题;核能利用需要建设核反应堆(站),要保证燃料的供给和运输,比煤能利用需要使用更多的能源,并且处理放射性物质也需要大量能源。如果想让核能利用更加安全,就需要使用比使用煤能多几倍的能源,而且其能源大部分要依靠石油。与石油能源相比,太阳能和风能利用的瓶颈是能源密度低、效率差,无法保证稳定供能。所以人们都认为它不可能成为主要能源。而且太阳能和风力能利用所需要的设备非常庞大,在制造这些设备时同样需要耗费大量能源。

  在能源压力下,我国必须把低能耗与新能源汽车和氢能及燃料电池技术列入优先主题和前沿技术。

  优化现有以石油和内燃机为基础的车用能源动力系统,发展节能汽车,重点发展直喷式内燃机及其混合动力系统。

  混合动力汽车是介于内燃机汽车和电动汽车之间的一种形式,能够兼顾降低燃油消耗和减少排放污染。混合动力技术为汽车动力系统的转型奠定了基础平台,是联结现有汽车节能环保技术与新能源汽车技术之间的桥梁。

  除了短期内可见利润的先进柴油车和混合动力汽车之外,电动车的发展前途也为多数业内人士所看好。电动车包括燃料电池汽车和纯电动车两种。

  因此如何在后石油时代,针对我国自然条件和能源资源特色,逐步改变汽车能源结构,发展汽车清洁代用燃料,在发动机上实现高效、低污染的燃烧,控制汽车发动机有害排放对我国城市大气质量带来的日趋严重的影响,已成为我国能源与环境研究中的一个十分重大和紧迫的研究课题。本文介绍了国内外各种汽车清洁代用燃料及其技术发展趋势。

  天然气(NG)和液化石油气(LPG)由于具有低的污染物排放被认为是内燃机的较理想代用燃料,已经被成功地应用于汽油机。

  作为车用燃料LPG的主要成份是丙烷、丁烷和少量烯烃和戊烷。LPG辛烷值较高,燃料费比酒精、汽油、柴油等便宜,CO、NOx等有害排放量低于汽油机排放,基本上消除黑烟和颗粒物(PM),发动机工作噪音低。天然气的主要成份是甲烷(一般为83%~99%)及少量其他烃类和CO2等。天然气具有较高的辛烷值,抗爆性能好,与汽油相比,燃烧更完全。天然气汽车因为其良好的排放特性及丰富的储量而成为各种代用燃料汽车的首选。

  氢气(H2)作为汽车燃料,氢气辛烷值高,发动机热效率高,发动机可在空气过量系数(λ)较大的范围内稳定燃烧,点火能量低,不到汽油最低点火能量的1/10,且氢燃料的火焰传播速度快,低温下易起动,其燃烧生成物主要是水和NOx,不产生HC、CO和碳烟排放。 但在发动机上使用还有回火、早燃、燃烧控制等问题尚待解决。

  氢的主要缺点是储运性能很差,氢的沸点为-253℃,以液态方式储存时成本高,不适宜长期储存。氢的制取原料有天然气、煤、水。从水制取氢有电解法、热化学法、光解法及微生物法。至今这些制氢方法的成本及能耗都较高、难以进行大规模制氢用于车用燃料,因此氢气必须在解决降低生产成本、储存运输等难题后,才能走向实用。

  醇类燃料甲醇和乙醇,具有辛烷值高、汽化潜热大、热值较低等特点。作为汽车燃料,醇类燃料自身含氧,在发动机燃烧中可提高氧燃比,CO和HC的排放较汽油和柴油的低,几乎无碳烟排放;另外,由于汽化潜热高,可降低进气温度,提高充气效率,使最高燃烧温度低,发动机的NOx排放较低。

  二甲醚(Dimethyl ether),简称DME,是一种含氧燃料,它无毒性,常温常压下为气态,常温时可在五个大气压下液化,具有与液化石油气相似的物性。二甲醚无C-C链,其十六烷值大于55,具有优良的压燃性,非常适合于压燃式发动机,用作为柴油机的代用燃料。

  阻燃剂是一种能够降低或抑制高分子材料可燃性的添加剂,用以提高材料抗燃性,主要用于阻止合成和天然高分子材料被引燃及抑制火焰传播的助剂。

  阻燃剂品种很多,按照分类不同,主要可以分为:按使用方式可分为反应型阻燃剂和添加型阻燃剂两大类。前者指与基材中的其它组分化学反应而形成的阻燃剂,或者为高聚物的单体,或者作为辅助试剂而参与高聚物的合成反应,最后成为高聚物的结构单元,多用于热固性高聚物;后者指只是以物理方式分散于基材中,多用于热塑性高聚物。

  按阻燃元素种类不同,阻燃剂常可分为卤系、有机磷系及卤-磷系、氮系、磷-氮系、锑系、铝-镁系、无机磷系、硼系、铝系等;按属性可分为有机阻燃剂和无机阻燃剂两大类,有机阻燃剂包括卤系(溴系及氯系)、有机磷系(含卤-磷系、磷-氮系)及氮系等,无机阻燃剂包括锑系、铝-镁系、无机磷系、硼系、铝系等。

  一个理想的阻燃剂应具有阻燃效率高、热稳定性好、光稳定性好、与被阻燃基材相容性好、本身低毒或基本无毒、燃烧时生成的有毒和腐蚀性气体量及烟量尽可能少、原料简单易得、工艺简便等特点。但实际上,目前许多阻燃剂很难达到理想的要求,近年来,追求高毒、低烟、无尘的阻燃剂已成为阻燃领域的重要课题及发展的主要方向。

  人类最早的阻燃历史可追溯至炼金术和罗马帝国时期,其阻燃成分很可能是铁和铝的二硫酸盐。1820年,Gay-Lussac研究发现:某些铵盐(如硫酸铵,磷酸铵及氯化铵)及这些物质与硼砂的混合物可用来阻燃纤维素织物。1913年, W. Perkin发现,采用锡酸盐(或钨酸盐)及硫酸铵处理织物,可以使织物获得了耐久的阻燃性能。1930年,人们发现了卤系阻燃剂(如氯化石蜡)与氧化锑的协同阻燃效应。

  1960年以后,美国、日本、西欧相继研制出了多种适用于热塑性塑料的填料型添加阻燃剂――溴系阻燃剂,20世纪70年代初至80年代中期,这类阻燃剂的生产和应用得到了蓬勃发展。

  我国阻燃剂的研制工作起步较晚,始于60年代后期,四溴乙烷是最早使用的一种含溴阻燃剂。80年代,随着对阻燃剂和阻燃材料的需求日益扩大,我国阻燃剂才得以迅速发展,但总体而言,远远落后于发达国家。与国外先进国家相比,我国阻燃剂科技含量低、生产规模小、品种单一、竞争力差。但随着化学合成技术、科学研究方法的发展及对基础设施投入的不断加大,我国阻燃剂市场需求不断增长,正处于一个新的发展阶段。

  溴系阻燃剂作为有机阻燃剂的一大类,主要由溴化剂(常用的是溴素)与有关有机物反应而得,其产量约占有机阻燃剂40%左右。

  目前,国外消耗量较大的溴系阻燃剂主要包括:四溴双酚A及其衍生物、十溴二苯醚及其同系物、脂肪族多溴化物、溴化芳烃、溴代酚及其衍生物及高分子阻燃剂等,其中,四溴双酚A是产量和消耗量最大的含溴阻燃剂,它可作为反应型阻燃剂用于环氧树脂、聚碳酸酷等,又可作为添加型阻燃剂用于ABs、酚醛树脂等;而十溴二苯醚是另一个产量大的添加型含溴阻燃剂。

  含溴阻燃剂由于具有其阻燃效能好、添加量少、加工性能优良、对高分子材料的物理、机械性能影响小、原料丰富、价格较便宜等优点,因此,溴系阻燃剂已经成为世界上发展最快、品种最多、产量最大、应用范围最广的有机阻燃剂之一,受到普遍重视。

  虽然溴系阻燃剂具有诸多优点,然而,溴系阻燃剂会降低被阻燃基材的抗紫外线稳定性,同时,在加工过程中、高温及燃烧条件下会产生毒性物质。1986年瑞士的研究人员研究发现,多溴二苯醚(PBDPE)及其阻燃的材料在510~630℃热分解时,会产生剧毒、致癌的多溴代二苯并f英(PBDD)和多溴代二苯并呋喃(PBDF),即出现所谓的“二f英(Dioxin)”问题。此外,溴系阻燃剂燃烧时,可能产生较多的烟雾、腐蚀性及有毒气体,主要包括HX、CO、CO2、SO2、NO2、NH、HCN等。

  由于溴系阻燃剂在高温及燃烧时易于产生毒性物质,因此,新型阻燃剂的发展迫在眉睫。目前,阻燃剂研究的方向主要包括:

  1)抑烟和消烟研究,即在阻燃剂中加入消烟剂,如铝、铜、铁化合物,使用超细氧化锑和胶体五氧化二锑,以硼酸锌代替三氧化二锑等;

  2)研究开发非卤阻燃剂,如磷系、磷-氮系、硅基、硼系等体系的研制与开发,但是除个别材料外,近期内难以找到性能/价格比与溴系阻燃剂相抗衡的阻燃剂或阻燃材料;

  3)研究开发新型溴系阻燃剂。小分子溴系阻燃剂因其易析出、易迁移、热稳定性差等缺点给环境造成极大地危害,而高分子型溴系阻燃剂因具独特的热稳定性和不喷霜、不迁移等优点,已逐渐成为人们研究开发的重点。因此,新型溴系阻燃剂的主要研究方向为:研究热稳定性高、耐迁移析出、耐候性好、毒性低、抗紫外的高分子型卤系阻燃剂,以解决其耐热、烟雾问题以及“二f英问题”。如DBDPE(十溴二苯乙烷)、溴化聚苯乙烯、溴化环氧树脂等新型溴系阻燃剂的广泛研究已表明这种趋向。

  [1]陶英丕.含溴阻燃剂的国内外进展.精细石油化工,1990:32-35.

  能源问题一直是制约湖北综合实力提升的根本性问题。湖北虽然占据着整个江汉平原,物产丰富,拥有三峡和葛洲坝两座大型水电站,但电力并入全国电网,由国家统配。湖北缺煤、少油、乏气,每年存在着巨大的能源缺口。由于湖北贫煤而使大规模范围火电依赖性强,一旦经济繁荣,能源供应之弦绷紧,湖北电煤就必然出现卡口,加大成本费用,而且火电污染大,调节性能差。加之湖北地处中部内陆,从海外进口石油等能源的成本较高,不利于企业降低生产成本和居民改善生活质量。随着经济进一步发展和工业化进程的加快,湖北省能源“瓶颈”效应将日益明显。

  湖北是个缺煤大省,电煤基本购自外省,如河南、山西、陕西等,且配额缺口大。2003年,分配给湖北的电煤为817万吨,实际用煤达到1300万吨以上,缺口超过400万吨。数据显示,我国在一次能源向二次能源转换方面,电力用煤占国内煤炭的比重从1990年的25%上升到2002年的53.5%。预计到2010年,湖北燃煤电厂装机容量将进一步增大,如再投产燃煤机组700万千瓦左右,用煤量将增加近一倍,全省电煤需求量将达到2500万吨左右,缺口只会越来越大。如果遭遇铁路运力紧张或煤矿减产,只有拉闸限电。必威 betway必威2001年―2004年连续四年在圣诞期间拉闸限电已经成为现实,导致了大量的工业企业停产,百万居民缺少生活用电,交通出现麻烦。

  现实表明:湖北是能源贫省,却是能耗大省。偏工、偏重的用能对象是湖北特色,这一点大不同于外省。全省73%的电量被工业吃掉了,重耗能的工业结构吞噬了许多毛利。全省目前平均电价0.36元左右,具体实行目录电价,这个电价水平与美国等发达地区相当,但湖北的单位产品能耗却比国际先进水平高出30%以上,有的甚至一两倍,使企业的竞争力大大降低。湖北省能源的利用效益也是很低的,且不与发达国家相比,就是和兄弟省市一站,湖北也矮了一大截。如单位能源创国民生产总值,湖北省仅及江苏的58%。同样1千瓦时电,别的省份能创十多元、数十元的工业产值,湖北只有七八元。耗能大、能效低无形中蚕食了相当大的企业利润。因此,加快对重工业、大型制造业的节能技术的改造势在必行。在此过程中,节能作为“第五大能源”也将会形成又一大新兴产业,不仅可以提高传统产业的利润率,而且节能技术产业自身也将形成一个前景广阔的市场。

  1. 电力工业发展较快。但人均能源资源相对不足,资源质量较差,探明程度较低,尤其是化石能源勘探程度低,制约了电力建设发展的优势。

  2.能源生产消费以煤为主。例如在上个世纪九十年代,湖北省原煤在一次能源生产中所占比重超过75%,在能源消费结构中,这个比例更高。进入二十一世纪以来,虽然湖北省水电大大发展,但其大部分都输往华东和华南地区,本土能源消费结构中煤的占有份额不减反增,从而给环境保护带来了极大的压力。

  3. 能源资源分布不均,交通运力不足,制约了能源工业的发展。湖北省能源资源西富东贫,水电大电源分布在鄂西,而负荷中心在鄂东。这种格局大大增加了能源输运的压力,形成了大容量、长距离、西电东送的格局。多年来,由于运力不足造成了湖北省电力供应的紧张。

  5. 能源工业技术水平低下,劳动生产率低。能量利用率低下,能耗水平高,环境污染严重的中小火电厂数量较多。

  6. 农村能源问题日益突出,影响越来越大。主要表现在三个方面:一,农村生活用能严重短缺,过度的燃烧薪柴造成大面积植被破坏,引起了水土流失和土壤有机质减少。二,随着农业生产机械化和化学化的发展,农业生产的能耗量急剧增长。三,乡镇工业能耗直线上升,能源利用率严重低下。

  7. 能源环境问题日趋严重,制约了经济社会发展。虽然以武汉为中心的城市群经济发展最快,但其环境污染在加剧,并向农村蔓延,生态破坏的范围仍在继续扩大。目前,在污染环境的各因素中,70%以上的总悬浮颗粒物,90%以上的二氧化硫,60%以上的氮氧化合物,85%以上的矿物燃料产生的二氧化碳均来自煤炭利用。

  8. 从能源安全的角度考虑,面临严重挑战。能源安全实质是保障能源可靠和合理的供应,湖北省煤、石油、天然气的供应呈逐年增长的趋势,但自产能源量少质差。目前,能源资源大省均开始实行资源保护战略,一旦煤的供应不足,将严重影响湖北省的工农业生产和居民的正常生活秩序。

  9. 发电类型单一,目前在湖北省内只有火电与水电供给,而具有市场前景和环境效益的风电、太阳能发电、核电和生物质能等的大规模利用几乎都是空白。即使有少数可再生能源生产企业,也是规模小,生产分散,竞争力不强,再生资源评价滞后,技术保障、技术装备与服务体系落后。

  湖北省内煤炭储藏量十分有限,探明储量不足全国的1%,上个世纪需要的煤炭90%靠外省供应,最近几年,外省供应量超过97%。目前湖北煤炭年产量近1000万吨左右,由于煤质差、发热量低、含硫量高,燃烧不完全,废渣、废气排放量相对较大,不适合燃煤电厂燃烧的需要。多年来湖北的火电燃煤由于受到资源和运力的双重制约,经常是质差量缺,且由于燃煤质量低劣,导致环境污染严重。

  水能是清洁可再生能源,是湖北能源的突出优势,可开发装机容量达3310万千瓦,名列全国前茅。长江流域水能资源理论蕴藏量为2.68亿千瓦,约占全国水能资源的40%。可开发的水能为1.97亿千瓦,占全国可开发水能资源的53.4%,年均可发电10270亿千瓦时,相当于年产原煤5.6亿吨。2004年,三峡电厂的供电范围由北网地区扩大到广东,首次出现跨南网、北网送电。因此,尽管三峡电力源源不断输出,但为湖北电网提供的电力并未大幅增加,未能改变目前湖北电网的电力短缺局面。

  湖北省内的石油已探明剩余可开采量仅占全国储量0.8%,天然气更少,需要从省外调入。川气入鄂,为湖北提供了新的能源供应渠道。

  太阳能、风能尚未能广泛应用,生物质能主要用于农村做饭,这些能源的利用还没有形成较大的规模。

  根据预测和分析,“十一五”期间到2020年,要保证湖北GDP的增长目标,需要从省外大量输入能源。显然,把能源保障完全寄托在全球和国内能源形势正常演变的前提下,风险较大、变数太多,可能会制约湖北的经济和社会发展。考虑到经济形势的发展变化,不确定因素则更加复杂。因此,必须从节能的角度规划和布局全省能源供需体系,降低阻碍发展的风险。同时,从可持续发展和循环经济模式的要求出发,必须转变增长方式,加大发展高效节能技术的力度,以促进湖北在这一轮竞争中处于较有利地位。

  目前,高效低污染的燃烧技术包括:①气体燃料的燃烧技术,主要在正确设计燃烧器,控制燃烧器参数和提高火焰稳定性等。②油的燃烧技术,主要注意提高燃油的雾化质量、实现良好的配风和燃料控制。③煤粉燃烧技术,主要是通过各种新型燃烧器来实现煤粉的稳定着火和燃烧强化,提高燃烧效率,实现低负荷稳燃,防止结渣,节约用油等。现已成熟的燃烧器包括:煤粉钝体燃烧器、稳燃腔燃烧器、开缝钝体燃烧器、夹心风燃烧器、火焰稳定船式燃烧器和双通道自稳燃式燃烧器等。④煤粉低氮氧化物燃烧技术,其方法主要采用空气分级燃烧和烟气再循环燃烧技术。⑤高浓度煤粉燃烧技术和流化床燃烧技术等。

  煤是通向未来可再生能源为基础的持久能源体系的桥梁,在相当长时期内,煤仍将是中国、也是湖北省的主要能源。因此,必须解决好煤炭能源的利用以及其给社会、经济和环境等带来的严重问题。这就要求积极发展洁净煤技术。

  洁净煤技术的含义是:旨在减少污染和提高效率的煤炭加工、运输、转化和污染控制新技术的总称。其核心是提高效率和减少污染,从而使煤炭成为洁净、高效、可靠的能源。具体包括:①燃烧前的净化技术。其中有洗选处理、型煤加工、制水煤浆。这是减轻污染、保护环境的最经济有效的途径。因此,煤炭深加工是国际公认的洁净煤技术的重点。②燃烧中的净化技术。主要是采用先进的燃烧器,通过改进锅炉和炉窑等燃烧设备的设计以及燃烧技术,减少污染物的排放,提高效率。这是洁净煤技术的核心。③燃烧后的净化技术。包括烟气除尘、脱硫、脱氮等。这是污染物排放控制的最后一道关口。④煤炭的转化技术。这是以化学方法为主将煤炭转化为洁净的燃料或化工产品,包括煤炭气化、煤炭液化和燃料电池。煤炭气化的优点是在其燃烧前脱除硫和氮成分。煤炭液化得到的是洁净的液体燃料,它将改变煤炭利用原有的地位。⑤废弃物的处理技术,是对煤炭开采和利用过程中所产生的矸石、煤层气、泥煤和燃煤电站产生的煤粉等污染物,进行无害化处理及资源再利用的技术。

  在能源梯级利用及管理方面,湖北省开展了大量卓有成效的工作。主要有:①用能大户能源管理:重点抓武钢、东风公司能源管理系统;②钢铁企业高炉煤气利用:煤气混烧发电、TRT透平余能回收、余热利用等;③建立联合循环电站:沌口联合循环电具有很高的循环热效率;④开发热电联供汽轮机,武汉汽轮发电机厂提供全系列中小热电联供汽轮机产品;⑤柴油机尾气吸附制冰技术;⑥高效换热器技术及产品。

  1. 优化用能系统。①提高能量传递和转换设备的效率,减少转换的次数和传递的距离。②在热力学原则的指导下,按能量品质合理梯级使用能源,尽可能防止高品质能量降级使用。③按系统工程的原理,实现整个企业或地区用能系统的热能、机械能、电能和余热的全面综合利用,达到能源利用最优化。④改善企业的能源管理系统。

  2. 调整结构,发挥效能。①调整工业结构。在不影响全局的情况下,可以适当调整轻重工业的比例。②合理布局工业。根据能源资源分布的特点,合理布局工业结构,达到区域能源优化配给,取得节能效益。③合理使用能源。各种不同品质的能源要合理使用,以发挥各自的优势,取得最大的经济效益。④多种能源互补,综合利用。⑤进行企业改造、设备更新及工业改革,采用高能效设备,淘汰高能耗设备。

  ①研究发展热电联产、热电冷联产和热电煤气多联供中关键技术;研究发展小型分散式能源系统技术,优化能源布局,加强能源安全;研究减少电厂自用电技术。对大量使用的工业窑炉,研究提高新建、改扩建工程的能耗准入标准;实现技术装备大型化、生产流程连续化、紧凑化、高效化,以及各种工业能源梯级利用、余热余能利用等,最大限度综合利用各种能源和资源技术。

  ②高效能源转换技术。抓好各种热能转换系统的的优化运行技术开发和推广。研究热力系统优化运行技术及监控软件;大型锅炉启动节油技术;运行参数优化设计与调整控制技术;热能、电能的储存技术等。

  ③建筑节能技术。研究适合湖北省气候条件的建筑节能50%的设计标准和示范建筑结构。深入开发采用蓄冷、蓄热空调及冷热电联供技术,中央空调系统采用风机水泵变频调速系统。加快太阳能、地热等可再生能源在建筑物的利用。

  以降低公路交通运输工具能耗为核心,研究发动机燃烧的改进策略、设计方法与理论模型,优化发动机燃烧与控制技术。开发汽油机缸内直接喷射和柴油机电子控制共轨技术、多气阀电喷、稀薄燃烧、提高压缩比、发动机增压等先进发动机技术、降低附属设备能源消耗等重大汽车节能技术以及其他机动车节油技术。发展缸径80mm以下直喷型单缸柴油机,直喷、增压、增压中冷、电控、四气门多缸柴油机,电控、增压车用汽油机及节能环保小型通用汽油机,代用燃料内燃机,电控高压燃油喷射系统等产品。鼓励发展每百公里油耗在5~7L的节能型轿车;加快轻型汽车的柴油化进程,发展柴油发动机轿车。

  提高公路和车辆运行管理水平。加快发展柴油车、大吨位车和专业车;加快运输企业集约化进程,优化运输组织结构,提高运输效率。合理规划城市交通运输发展模式,加快发展大城市轨道交通等公共交通,提高综合交通运输系统效率。制定和实施机动车燃油经济性标准并实施车辆燃油税等相关制度,促进汽车制造企业改进技术,降低油耗,提高燃油经济性,引导消费者购买低油耗汽车。

  发展混合燃料汽车,在城市公交车、出租车上推广混合燃料,研究气体燃料发动机供给系统控制与匹配技术,车用醇类混合燃料燃烧与控制技术,车用生物油制备与混合燃料技术,加快节约和替代石油步伐。

  ⑤电力电子节能技术。深入研究低损耗输、变、配电技术和设备,进一步降低输、变、配电损耗。开发节能电机新技术,提高电机效率。

  组织研发高效率、低成本太阳能电池,加快推进产业化。结合湖北省风能和太阳能的分布特点,依托湖北省通城、利川风力发电场建设,开展太阳能热气流与光伏联合互补发电模式的研究,率先在湖北省建设100kW级太阳能热气流与光伏互补发电示范工程。该电站造型独特,形成非常壮观的景点,可以和旅游结合,大力发展旅游业;利用太阳能温室效应在集热棚内种植农副产品;通过互补发电模式运行,提高电站发电效率。

  由于生物质能资源分散,收集手段落后,生物质能利用工程规模很小;此外,大多数工程工艺简单、设备简陋,设备利用率低,转换效率低下。因此,提出建设生物质能多联产系统。建设汽化系统、液化系统和移动系统,解决运输问题,同时致力于开发高效、无污染的生物质能利用技术,以达到保护矿产资源,保障国家能源安全,实现CO2减排。开发低污染生产技术、推广低成本系统并推进装置与系统的产业化。

  利用湖北省已有氢能利用技术基础,围绕燃料电池的产业化,研究开发系列燃料电池发电机组,开展燃料电池关键材料及其制备工艺研究,加强燃料电池核心组件微结构设计和低成本制造技术研究,组织车用燃料电池发动机设计及其系统匹配与优化技术研究,无污染制氢与移动储氢技术研究,燃料电池检测鉴定技术研究,车用燃料电车加氢站设计运行规范与评估技术研究。组织燃料电池汽车运营示范规划,推动东风电动汽车产业发展。

  高分子可燃材料具有优良的性能,其应用的范围也越来越广,特别是在建筑、交通、家具、电子电器等行业领域被大量使用,美化和方便了人们的环境和生活,获得了显著的经济效和社会效益,已逐渐代替传统材料。然而大多数该分子材料都易燃、可燃材料,在燃烧时热释放速率快、火焰传播速度快、发热量高、不易熄灭,还产生大量浓烟和有毒气体。随着高分子材料的广泛应用,其潜在的火灾危险性大大增加,因而如何提高高分子材料的阻燃性能,成为当前消防工作急需解决的一个问题。

  关于阻燃高分子材料目前尚无明确分类,通常可按照获取阻燃性能的方式划分,可将其分为本质阻燃高分子材料和非本质阻燃材料两种。一种是材料本身具有阻燃性;另一种是通过加入添加阻燃剂获得阻燃性能。非本质阻燃材料可根据阻燃剂添加方式分为添加型阻燃高分子材料和反应型高分子材料。所谓添加型阻燃高分子材料,即在高聚物加工过程中,将阻燃剂以物理方式分散于基材中而赋予材料的阻燃性;反应型阻燃高分子材料的阻燃剂是在高聚物的合成中加入的,它作为一种单体参与反应,并结合到高聚物的主链或支链上,使高聚物含有阻燃成分[1]。

  阻燃剂是用于提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。在现代化社会中,阻燃剂具有着诸多的类型,旨在能够为了切实满足不同环境下的防火需求,就其所包含的类型来看,主要可以分为以下3种。

  第一种,是有机阻燃剂,主要用于针对有机物的燃烧预防,比如包括磷酸酯、卤系和纺织物等等,具有着耐久性的特点。

  第二种为无机盐类阻燃剂,包括的产品主要有氯化铵、氢氧化铝等等材料,这种类型的阻燃剂具有着无烟、无毒与无害的优势,因此成为了目前应用领域最为广泛的一种阻燃剂。

  第三种为有机和无机混合类型的阻燃剂,这种类型的阻燃剂通常被科学界认为是无机阻燃剂的升级版,拥有着和无机阻燃剂同等的优势,但相对来说具有着较高的成本,因此并未普及应用。而从不同阻燃剂的阻燃元素上看,又可以划分为几种,包括卤系阻燃剂、磷系阻燃剂和硅系阻燃剂等,其各自有着相应的优势和缺点,但依然凭借着不同的特点被广泛应用于不同的防火领域当中[2]。

  受到近些年科学技术飞速发展的影响,高分子材料的阻燃技术水平也获得了突破性的发展,包括阻燃剂微胶囊技术、交联与接枝改性等等,无论是何种新技术的应用,其作用原理都大体相一致,区别主要在于对人工合成技术的依赖程度有所不同,最明显的技术优势更是在于对传统材料阻燃之后所产生的有毒有害气体的转化,最具代表性的便是现代阻燃技术领域的纳米技术应用,不仅能够有效降低阻燃过程中各类反应对环境的污染,同时更凭借较高的技术水平全面提高了阻燃技术的安全性。

  高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。其中包括6个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用[3]。

  在现代工业领域当中,阻燃材料凭借着自身所具有的阻燃优势,已经获得了越来越广泛的发展前景。传统的添加阻燃剂,在热量不断加升的同时,其有毒气体也将被释放出来,产生有毒气体将会严重危害心肺功能,因此,在传统阻燃剂中,也相应增加了磷酸酯等化学物质,以便于通过磷酸酯来提升材质的气体吸附能力,相比较来讲磷氮化合物拥有更加高等的吸附能力,正是由于添加型阻燃剂中存在以上不同的化学物质,因此,阻燃剂安全系数也将被提升。由此也就确定了磷系阻燃剂的地位。伴随着现代技术的发展各类阻燃产品均获得了良好的发展应用空间,各类阻燃产品的优势也开始越来越突出,由于阻燃材质中的阻燃性能受到影响,才最终达到阻燃的实际效果。相对来讲,阻燃技术也通过阻燃剂的化学功能,改变其传统的分子结构,以至于实现阻燃价值。因此,阻燃技术应具备一定的高分子材料脱水碳化功能,并在此基础上,吸收相关的有毒气体,当值在材料燃烧中,产生有毒气体,威胁相关人员的生命健康。对此应当进一步加大对现有阻燃剂的研发力度,并在科学技术的支撑作用下对现有的阻燃剂进行改善与功能领域的创新,使现有的阻燃剂能够具备传统的阻燃性能优势,还同时具有更多的现代化功能比如耐热、抗辐射等等[4]。

  高分子阻燃材料的绿色发展方向已经开始被充分重视,其是社会的现代化发展需要,阻燃剂在各个行业领域当中的应用量有着明显的增加,所有新材料与新产品的更新换代频率都在不断加速。而与此同时,人们的环保意识也在不断提升,因此,阻燃剂的技术发展方向也开始逐渐趋向于绿色化发展。尤其是近些年社会开始重点关注对可持续发展的建设,必威 betway必威由此直接决定了阻燃剂的发展需要契合生态的关系。目前,国际当中已有一部分发达国家开始致力于从环保角度出发来限制对污染环境阻燃剂的生产与使用,该文认为,这样的现状本质上也是对人们生命财产安全负责的另一种形式。不可否认,中国作为生产制造大国,高分子产业的发展具有着显赫的地位,在国际阻燃材料飞速发展的大势所趋之下,消防部门同时出台了新的规定,旨在为阻燃材料的科学化更新提供明确的方向指引。在当前市场竞争激烈的形式下,阻燃技术的开发在外界的推动下有了技术上的提高。尤其是低毒低烟、无卤高效的环保阻燃剂更是起到了不可估量的作用。综上,不管是卤系阻燃剂还是无卤阻燃剂,其必然趋势都是向环保型无卤阻燃剂发展,发展方向都以低毒化、环保化、高效化、多功能化为主[5]。

  当前,对于阻燃技术的研究,我国还有待加强,在相关技术研发力度,以及自主研发等环节,相对于国外先机技术仍然存在较大的进步空间。但根据我国当前研发技术来讲,已经较传统技术提升了许多。近些年国家积极进行科研技术支持,在研究经费中,研究技术中,积极给予帮助,使得各项技术研发工作中逐渐扩大,研发力度也逐渐加深,在国家技术支持上,当前各项技术研发应用皆取得了良好的成绩,阻燃技术便是其中一项,在国家的扶持帮助下,阻燃技术应用价值逐渐得到挖掘,阻燃技术研发也渐渐深入到人们的视野之中。

  由从传统阻燃技术当前的阻燃技术研发,期间经历中众多变迁,最早阻燃技术是由物理作用的帮助喜爱,实现对氧气的阻隔,最终达到阻燃的效果,当前新型阻燃技术的研发,使得性质阻燃上升至化学反应界面中,通过对材质化学分子的改变,使得可燃性材质逐渐具备阻燃技术,从融合阻燃逐渐转变成为无机阻燃,并在阻燃技术研发的过程中,更加注重了对有害有毒物质的处理,通过添加可吸附分子,将有毒有害物质进行吸附,在实现了阻燃技能的基础上,实现了无污染的目标。这种科技研发的成果符合了绿色发展以及可持续发展理念的要求。当前在阻燃技术研发中,微胶囊技术、纳米技术等其他技术的影响,使得可燃材料的阻燃效果大大得到提升,阻燃性能也随着阻燃效果不断变化。在阻燃技术应用中,复合型材料的应用也为阻燃技术提供了发展方向。

  该文认为,在今后的发展中,随着阻燃技术的提升,阻燃性能的变化,必将使阻燃形态以及其他性能达到提高,并在科研技术的研发过程中,随着可持续发展理念的贯彻,坚信可燃材料阻燃技能将会更加环保。

  综上所述,通过对阻燃技术的研究可知,阻燃技术经历了从物理阻燃向化学阻燃技能的转变,在化学阻燃中高分子材料阻燃功能得到了有效的提升。随着阻燃技术研发的不断加深,我们坚信,阻燃材料的发展也会与之相适应,产品结构也会相应调整,我们必然会找到解决的办法,开发出符合人们需求的高分子阻燃材料。

  [1] 郭永吉.高分子材料阻燃技术的应用及发展探究[J].江西化工,2014(4):208-209.

  [2] 郭晓林,李娟,李莹.挤塑聚苯乙烯泡沫塑料的阻燃技术现状与发展趋势[J].中国塑料,2014(12):6-11.

  [3] 高建卫.我国建筑保温技术进展及存在问题分析[J].材料导报,2013(S1):276-280,284.

  随着现代社会工业的发展,环境问题已经成为人类关注的焦点,由于大量排放二氧化碳导致的温室效应便是其中重要的一环,其带来的危害已经为各国政府高度关注。我国政府承诺到2020年碳排放强度比2005年降低40-45%,足可见我国对控制二氧化碳排放的决心之大。但当前我国的能源领域面临着多方挑战,能源消费增长迅速,且现阶段我国的能源结构仍以煤炭为主,世界一多半的煤炭为中国所用,中国60%多的煤炭用于发电,因此控制燃煤电厂二氧化碳的排放是我国碳减排的关键,研究电厂二氧化碳捕集运输和储存技术显得举足轻重。

  燃煤电厂对燃料燃烧不同阶段产生的二氧化碳的捕集分为燃烧前捕集、燃烧后捕集和富氧燃烧捕集三条技术路线。现阶段捕集方法主要有物理吸附法、物理吸收法、化学吸收法、膜分离法、低温蒸馏法等,使用何种捕集方法取决于二氧化碳气体的浓度、压力、温度,不同类型发电机组以及不同技术路线会选用不同的捕集方法。

  2.1 二氧化碳捕集技术路线 燃烧前捕集:燃烧前捕集技术主要应用在整体煤气化联合循环发电系统(IGCC),IGCC的工艺流程主要为:氮气作为动力气源带动燃煤进入气化炉,与空分系统分离送出的纯氧在气化炉内发生高压富氧反应,生成有效成分主要为一氧化碳和氢气的混合气体,随后,在催化转换器中经过水煤气变换后,促使一氧化碳转换为二氧化碳并进一步产生氢气,混合气体中二氧化碳被捕集分离,氢气经过净化作为清洁的气体燃料送入燃气轮机用于燃烧。燃烧前捕集技术的优点是由于混合气体的压力较高,可以生成浓缩的二氧化碳气流,不用加压便能满足压缩机对管道内输送气体压力的要求,减少能耗,同时高浓度的二氧化碳气体有利于捕集和利用,该技术还具有捕集系统小、捕集效率高以及对污染物的控制方面有很大潜力的优点,缺点是IGCC技术仍面临初期成本高、可靠性不高的问题,并且由于二氧化碳捕集系统需使用蒸汽以及压缩机需使用额外功率会导致IGCC面临发电成本增加40%、效率降低22%的问题。该技术常采用物理溶剂吸收方法和膜分离法来捕集二氧化碳。

  2.1.2 燃烧后捕集:燃烧后捕集顾名思义是在燃料燃烧后产生的烟气中进行二氧化碳捕集的技术。由于电厂烟气中二氧化碳的浓度相对较低,该技术路线一般采用化学吸收法并需要使用强力溶剂。该技术的优点是只需对现有燃煤机组加以改造加装二氧化碳捕集装置即可,不需要对机组的结构进行大面积的调整,适合运行机组改造,并且该种技术是一种成熟的技术,缺点是由于烟气中二氧化碳的浓度较低,二氧化碳的捕集费用相对较高,同时还面临溶剂再生需要消耗大量能量的问题。燃烧后捕集技术还可使用物理吸附法、膜分离法和低温蒸馏法捕集二氧化碳。

  2.1.3 富氧燃烧捕集:富氧燃烧捕集顾名思义就是化石燃料在燃烧的过程中助燃剂是纯氧而非空气,这样燃料燃烧完毕烟气中主要含有二氧化碳和水蒸气,只有少量的二氧化硫、碳氧化物等杂质,把烟气进行脱硫、脱硝及除尘后进行冷却,除去其中的水蒸气便可得到高纯度的二氧化碳,纯度能够达到80%至98%,少量烟气再循环进入燃烧室,目的是控制火焰温度,防止燃料在纯氧中燃烧时温度过高,并且提高了烟气中二氧化碳的体积比。此种技术的优点是捕集成本低;由于没有氮气参与燃烧,烟气中氮氧化物的含量大大降低;由于是富氧燃烧,可以降低燃料的消耗量,提高热效率,缺点是燃烧需要在富氧的环境下进行,制备高纯度氧的能耗很高;燃烧室需要改造;该种技术面临的问题很多,如烟气再循环的参入量、氧量变化造成锅炉燃烧调节的改变等,该种技术尚不成熟,处于示范阶段。

  综上所述,三种二氧化碳捕集技术路线各有特点,燃烧前捕集技术占用场地小、捕集效率高但初期成本高,适用于IGCC电厂;燃烧后捕集技术对已建电厂改造难度小、技术相对成熟但捕集成本高;富氧燃烧捕集成本低但制氧能耗高、技术不成熟,燃烧后捕集和富氧燃烧捕集技术路线主要适用于传统以化石能源为燃料的电厂,并适合老厂改造。现阶段,三种技术路线均未达到商业化的程度,只处于实验室阶段或有少量的示范项目。

  物理吸收法是利用有机溶剂在高压下对二氧化碳的吸收量增大的机理实现的,通过对有机溶剂降压便可以释放二氧化碳,还原溶剂。此种方法能耗较低,要求有机溶剂具有对二氧化碳的溶解度随压力变大增速明显、沸点高、选择性好、无毒、稳定性好等特点。常用的物理吸收溶剂有聚乙二醇二甲醇、甲醚、环丁砜、三乙醇胺和碳酸丙烯酯。

  化学吸收法在化工行业是一种常见的方法,一般二氧化碳的吸收溶剂为有机胺的水溶液。研究发现水对乙醇胺吸收二氧化碳的能力有提升作用,没有水的存在,1mol乙醇胺只能吸收0.5mol二氧化碳,水存在的情况下,1mol乙醇胺能吸收1mol二氧化碳。醇胺类化学吸收法的优点为技术成熟、吸收量大、选择性高并能同时吸收硫化氢和氮氧化物等有害气体;缺点为吸收溶剂再生困难,需要消耗较高能量;对设备易腐蚀;在富氧的环境下,吸收性能大幅降低等。

  物理吸附法是利用固体吸附剂对二氧化碳进行选择性吸附的原理,脱除烟气中的二氧化碳,吸附法分为变温吸附法和变压吸附法。固体吸附剂表面的孔径大小、孔容和极性以及吸附材料分子量、分子大小、极性决定了该吸附剂的吸附能力,此种方法比吸收法具有吸附过程需要能量少的优点,并且由于吸附过程是放热过程,吸附剂需要通过加热还原再生。物理吸附法对二氧化碳的捕集成本与吸收法大致相当,但其对二氧化碳的吸附量和选择性要更好,并且吸附剂的还原需要的能量较低,操作简单,相比吸收法更具有市场价值,缺点是进行二氧化碳捕集前需要将混合气体冷却、干燥,以及除去易使吸附剂中毒的气体,并且存在二氧化碳回收率不高以及吸附剂选择性的问题。常用的吸附剂有天然沸石、分子筛、活性氧化铝、硅胶和活性炭等。

  膜分离法是利用部分气体无法穿透薄膜的原理对气体进行分离,此法的驱动力是膜两侧的压差,当差压达到一定值时,能够穿透薄膜的气体会透过薄膜,捕集气体会留在膜内。薄膜的气体选择性、压力比、穿透气流和总气流的流量比决定了此薄膜的二氧化碳捕集能力。此方法在分离工业合成氨尾气、炼油尾气等领域已经广泛使用,但是由于电厂烟气流量大,需要膜的面积很大,成本高。用于捕集二氧化碳的薄膜有醋酸纤维膜、聚苯醚膜、乙基膜、聚砜膜、溴磺化聚环氧丙烷膜、沸石矿物膜等。

  低温蒸馏法是利用不同气体的冷凝点不同而进行气体分离的,系统一般由压缩机、焦耳汤普森阀、多级热交换器和膨胀机组成,系统中设有不同温度的冷阱,以此来捕集不同冷凝点的气体。由于低温蒸馏法是在液态的形态下捕集到的二氧化碳,为运输和储存提供便捷;该方法同时还能减少水的消耗、化学试剂的使用量以及有效解决设备腐蚀等问题,缺点是设备庞大、能耗大、烟气中的粉尘易阻塞设备等,此方法一般用于分离高浓度的二氧化碳,常用于分离油田伴生气中的二氧化碳。

  所谓的二氧化碳捕集新方法是指尚在实验室研究阶段,技术尚未成熟的方法,主要有化学循环捕集法和二氧化碳水合分离法。

  上述几种二氧化碳的捕集方法各有千秋,需要根据捕集技术路线选择合适的捕集方法或几种捕集方法的集合,电厂的二氧化碳捕集方法大多尚在实验室或示范阶段,需要进一步研究论证。

  二氧化碳经捕集、压缩形成超临界流体或液体,通过铁路、船舶、管道等输送工具运至目的地的过程称为二氧化碳的运输。当运输距离较远时(大于1000千米)管道运输的成本最低,并且管道运输是一项成熟的商业化技术,其成本取决于管道的长度、直径、二氧化碳的压力和地质特点。

  二氧化碳的存储技术分为地质储存、海洋储存、储液站储存、固态储存和矿物碳化储存技术。

  地质储存技术是把超临界状态的二氧化碳灌入油田、气田、无法开采的煤层、深盐水层进行储存,这些地层必须由岩石密封,并且相对二氧化碳来说是不可渗透的。把二氧化碳注入油田或气田存储二氧化碳的同时用以驱动采油或气,可以提高30%至60%的石油产量;注入无法开采的煤矿可以把煤层中的煤层气驱赶出来,增加煤层气采集率;深盐水层储存技术由于储存容量大具有最大的潜力,该方法已于1996年一家挪威的能源公司投入商业运行。

  海洋储存技术是把二氧化碳输送到海洋600米深度以下的区域,在此深度由于水的压力能够把二氧化碳转换为液体,当储存深度达到3000米、温度低于10摄氏度时,液态二氧化碳的密度会大于水的密度,并在表面形成粘稠状薄膜,防止二氧化碳扩散。此种技术可能会改变海洋的PH值,其对环境的危害程度未知,此种技术还在探索阶段。

  储液站储存技术是把捕集到的二氧化碳进行净化、干燥等处理后冷却形成高压、低温的液态二氧化碳,具有效率高、气体纯度高、储量大的特点。

  固态存储技术是把二氧化碳先高压压缩形成液态二氧化碳,然后高压低温冷却形成干冰储存,由于其生产工艺困难且储存条件费用高,此项技术并不常用。

  矿物碳化技术储存二氧化碳是一项新兴技术,技术原理是将二氧化碳矿物碳化固定与含方英石杂质的钙基膨润土深加工相结合,利用钙基膨润土容易通过离子交换形成碳酸钙以及碱法分离方英石过程中容易形成吸收二氧化碳溶液的特点,实现吸收固定二氧化碳,但其预期成本远高于其他存储方法,不适合开展利用。

  现阶段,制约二氧化碳捕集存储技术发展的关键在于技术不成熟和高昂成本问题,研究开发成熟、高效、低成本的二氧化碳捕集储存技术将是未来发展的方向。本文通过对现有的二氧化碳的捕集、运输及储存技术进行阐述,为未来该技术在电厂的成熟应用提供理论依据。

  秸秆禁烧是社会关注的热点问题:一方面,秸秆禁烧令无法根本上阻止农民继续大规模焚烧秸秆,并由此带来严重的雾霾天气[1]。2014年10月25日,长春市空气质量指数AQI“爆表”,高达500,秸秆焚烧是主要原因[2]。另一方面,现有生物质发电厂普遍存在秸秆收集难、即便是在国家大量补贴的情况依然很难实现收支平衡的现象。为什么政府年年发通知禁烧秸秆,年年禁不住?为什么农民宁愿冒着被罚风险去“偷”烧秸秆,也不把秸秆卖给生物电厂呢?有没有一条秸秆能源化利用的有效途径?

  带着这些问题,中国社会科学院工业经济研究所能源经济研究中心的专家们于2014年11月专程到吉林长春进行调研。通过调研发现:第一,在国家能源局与吉林省能源局共同支持下,吉林长春用“易货合同模式”――一种秸秆能源化利用的新模式,发展秸秆颗粒成型燃料(以下简称颗粒生物质能),在治理秸秆禁烧、替代煤炭、解决农民冬季取暖、改善农村生活环境、提供农民就业等方面,表现出良好的经济社会价值,值得有条件的地区学习借鉴。第二,颗粒生物质能是农村作物秸秆能源利用的重要方式,是改变农村用能习惯和能源消费结构的重要途径,对发展农村循环经济、提高农民生活质量具有重要的现实意义。第三,农村用能革命是全面小康社会的物质基础,它关系到农村家庭生活水平的提高、能源公平和中国能源发展的全局。用“易货合同模式”发展秸秆生物质能,将为我国部分地区农村生物质能源规模化、工业化发展,提供了一条经济适用的途径,也是传统农业县乡发展新能源、实现农村用能革命的重要手段。

  秸秆颗粒燃料发展的易货合同模式是农村秸秆能源化利用的一种新模式,它是指以秸秆颗粒燃料加工企业为主导,通过农民用秸秆换取秸秆成型颗粒燃料,实现秸秆收集、颗粒燃料加工生产的一种颗粒生物质能的发展模式。

  该模式将解决农民用能问题与新能源产业稳定发展结合起来、禁烧秸秆与秸秆能源化利用结合起来、秸秆收集与秸秆成型颗粒燃料市场开拓结合起来,解决了农民炊事、取暖的能源需求,实现了禁烧秸秆和秸秆能源化利用的目标。具体做法就是:秸秆颗粒加工企业与农户签订“能源易货合同”。合同核心内容主要包括:第一,农户每年用15 t-20 t秸秆跟企业换5 t秸秆成型颗粒燃料,同时要求农户与当地政府签订秸秆禁烧责任书。第二,企业为签约户无偿提供秸秆成型颗粒燃料炉具和技术服务,用易货贸易的方式向签约农户每年提供5 t的颗粒生物质能。

  该模式的核心是农民不花钱用自家地里的秸秆,换回清洁的颗粒生物质能替代煤炭取暖做饭;企业在少花钱实现秸秆资源收集的同时,锁定了颗粒生物质能用户,降低了经营风险。秸秆颗粒燃料发展的易货合同模式的魅力在于:自己不花一分钱、不要国家一分钱,农民就能用上清洁的颗粒生物质能,较好地解决了企业发展生物质能时的秸秆收集瓶颈和市场开拓问题,是低成本秸秆能源化利用的有效途径之一。

  我们从产业链条下的利益主体,即农户、企业、政府,分析“易货合同模式”发展成型颗粒燃料新能源的优势。

  过去用秸秆烧火做饭,一家人需要2-3车秸秆,剩余的大部分没什么用;6个月的冬季,平均每户烧炕取暖得用2-3 t散煤,要花1 000元;现如今不花一分钱,农户用自家地里产的颗粒燃料,15 t秸秆换5 t成型颗粒,就够自家一年取暖做饭用能了。东白_村之所以写入我们的报告,是因为东白_村第10小组,一个自然屯的村民们基本都用上了颗粒燃料取暖做饭。东白_村位于吉林长春农安县城北偏西约40 km处,属杨树林乡。白_村下辖17个村民小组,1 265户,分布在16个自然屯。东白_村第10小组约有土地100 hm2,每公顷玉米地可产8-9 t玉米秸秆,地里产的秸秆足够全屯60户人家取暖做饭了。每年少烧散煤150 t,少花钱6万多元。

  目前这种“易货合同模式”使用颗粒燃料取暖做饭,已在吉林长春杨树林乡2 000农户中推广,杨树林乡政府、、学校、敬老院和10个商业用户全部采用颗粒燃料供热[2]。由于秸秆收集、加工和农民用能相结合,农民既是秸秆的提供者,也是颗粒燃料受益者。正是因为不花钱可以用上清洁能源,让农户有了收集秸秆的积极性、禁焚秸秆的自觉性。

  农民大规模焚烧玉米秸秆主要是农业生产做好土地清理准备工作。目前主要是焚烧和秸秆粉碎还田,但是大规模秸秆焚烧和秸秆还田对农业生产可能产生一定的不利影响:一是焚烧秸秆会破坏土壤结构,形成板结,造成农田质量下降;还会直接烧死、烫死土壤中的有益微生物,影响作物对土壤养分的充分吸收,直接影响农田作物的产量和质量,影响农业收成。二是秸秆焚烧后留下的钾素和磷素,多呈不溶解状,很难被农作物吸收。三是秸秆粉碎还田,一方面还田后的秸秆不易腐烂,影响下茬播种质量,另一方面,秸秆粉碎还田须要深埋,这样就会把生土翻出,也会影响作物产量与质量。通过“易货合同模式”发展秸秆成型颗粒燃料,可以达到了农田清理准备的目的。

  以往用秸秆直接做饭,燃烧效率低(20%)、灰尘多,用农民的话来说,就是特别“埋汰”,到了春季秸秆生虫,家里环境卫生更差。如今用加工好的颗粒燃料做饭取暖,燃烧效率高(85%),火焰稳定接近天然气,几乎无灰尘,存放取用方便,干净卫生。

  通过调研发现,农村发展成型颗粒燃料新能源,对当地经济发展、秸秆资源商品化利用起着积极的作用,具有较好的经济社会效益与环境效益。

  秸秆转化为成型燃料,涉及资源收集、加工、储运、锅炉燃具制造和服务五大领域,产业链条长,辐射范围广,可以促进农民就业。我们调研的吉林农安县杨树林乡年产5万t秸秆成型燃料示范项目,该项目直接吸纳就业180人,年创造工业产值3 700万元,拉动社会3 000万元。吉林是产粮大省,年产秸秆产量4 000万t左右,按照吉林省规划,到2020年前开发秸秆成型燃料300万t(折标煤150万t),按我们调研的示范项目数据推算,吉林秸秆成型颗粒燃料产业的潜在吸纳就业1多万人,直接带动社会18亿元,年创造工业产值22.5亿元。如果按我们调研的林农安县杨树林乡年产5万t秸秆成型燃料示范项目数据,即那么吉林400万t需要24亿元,每年将创造工业产值30亿元,为企业带来收入3.6亿元。

  替代农村散煤,环境贡献大。调研的年产5万t颗粒燃料项目,如果其中3万t为易货模式,那么每年直接可为2 300户农民提供1.17万t的易货生物质能源,为农民节省了285万元取暖支出(假如散煤价格为350元/t),直接少用散煤5 800 t。替代2.5万t标煤的煤炭,减少CO2排放6.55万t、SO2排放600 t和NOX排放185 t。

  如果吉林易货合同模式的成型颗粒燃料产业规模达到300万t,那每年可为减少煤炭200万t标煤,减少CO2排放390万t、SO2排放3.6万t和NOX排放1.11万t。为农村通过易货模式提供生物质能源70万t,为城市提供商品生物质能230万t,可供热6 000万m2,同时可以解决30万农户炊事和取暖用。

  在调查中农户们反映,过去总为处理多余的秸秆伤脑筋,晚上偷偷摸摸到地里烧秸秆还怕被罚。如今因为秸秆可以免费换秸秆颗粒新能源,还免费给装炉子,所以大伙都愿意把秸秆收集起来送到站上(企业设立的秸秆代换便民服务站)换颗粒。如今全屯没有一户在野外焚烧秸秆,改善了空气质量,家里也干净了。

  在吉林长春我们还调研了生物质发电企业和传统模式的生物质颗粒燃料企。