BETWAY必威·(中国)官方网址
必威 betway必威生物燃料的优点精选(九篇)
发布:2024-04-22 01:42:25 浏览:

  必威 betway必威必威 betway必威石油作为全球经济发展引擎的原材料,具有储量大、分布广等优势,长期以来在能源中占主导地位,是汽车、轮船等交通工具的优质动力燃料。但随着世界经济的飞速发展,人类对石油的需求越来越大,导致石油总储量逐年递减,能源危机日益加重,环境污染加剧等问题。

  石油燃料发动机排放气体污染严重,特别是氮氧化物和硫氧化物及温室气体二氧化碳等气体的排放尤为突出。其中,汽车、船舶等燃油发动机所排放的颗粒污染物(PM)、一氧化碳(CO)、氮氧化物(NOX)、硫氧化物(SOX)等有害物是大气污染的主要污染源,对人体和环境造成严重的损害[1]。为了控制石油燃料发动机废气排放并缓解能源危机等问题,各国都制定了严格的排放法规。同时,积极寻找新型、节能减排的替代燃料,开发新能源发动机。LNG-柴油双燃料发动机的推广使用,可以解决石油资源短缺的问题,减少有害气体排放,达到节能减排的目的。

  常温常压下天然气是无色、无味、无毒、无腐蚀,是一种以饱和烃类为主的混合气体。其主要成分是甲烷,约含有85%-95%,并含有少量的氮气、硫化物。随着天然气的加工、储存、运输、应用等技术的不断成熟,天然气应用范围不断拓展,其中在汽车、船舶等发动机上的使用最为显著。

  液化天然气(Liquefied Natural Gas简称LNG)是天然气经压缩、冷却,在-160℃下液化而成,主要成分是甲烷。天然气在液化过程中进一步净化,甲烷纯度高,几乎不含氮气和硫化物。其作为一种优质燃料,具有洁净、经济、高效、资源丰富和方便储运等优点。天然气用作汽车、船舶等设备的替代燃料,与汽油、柴油相比,其二氧化碳、硫氧化物和氮氧化物的排放量明显降低,几乎不含颗粒物,是一种理想的发动机绿色替代燃料;其燃料、维护保养成本较低,具有显著的经济效益[2]。经过长期的发展,LNG产业已经形成了液化、储存、运输及终端使用一整套工艺技术和装备。

  LNG的密度取决于其组分,由于LNG产地不同其密度通常在430kg/m3-470kg/m3之间。其主要特点如下[3]:

  1、LNG体积是同质量天然气的1/625,重量仅为同体积水的45%,可以使用汽车、火车、轮船等常规设备运输。

  3、LNG作为优质的发动机燃料与石油相比,它具有辛烷值高、抗爆性能好、燃料费用低、节能环保等优点。LNG-柴油双燃料发动机尾气中,HC减少72%,NOx减少39%,CO减少90%,几乎不含有Sox及颗粒物。

  石油燃料燃烧排出的废气主要成分是NOX、CO、CO2、SOX和颗粒物等有害气体[4]。二氧化碳(CO2)加剧温室效应,温室效应导致海平面上升、土地面积减少,且使气温上升,厄尔尼诺现象严重,造成极大的经济损失。NOX和SOX在空气中氧化,生成NO2和SO2是酸雨形成的主要原因,大气中氮氧化物和硫氧化物浓度高了就会产生烟雾和酸雨,刺激人的呼吸道和肺部,引起肺炎和支气管炎。

  LNG燃烧与汽油相比,CO2排放减少27%左右;与柴油燃烧相比,CO2排放减少35%左右。

  根据最新国内内河船舶规范――2013年01月01日,《内河绿色船舶规范》船级社要求,内河船舶柴油机排放要求如下[5]:

  凡输出功率超过130KW的柴油机(应急发动机以及安装在救生艇上或只在应急情况下使用的任何设备或装置上的柴油机除外),其NOX的排放量(按总的NOX加权排放量计算)应在下列限制内:

  船上使用的任何燃油的含硫量,应不超过3.5%。也可采用清洁后处理装置将排放废气中SOX排放量控制在14.0g/kwh以下。因此,建设绿色船舶,节能减排是航运业面临的重大课题。

  由于LNG-柴油所具有的优势,天然气发动机在汽车、船舶等领域得到推广应用。为了适应不同的应用要求,各机构和企业开发了多种燃料供给方式的天然气发动机,主要有进气道喷射、缸内直喷等方式[6]。

  必威 必威betway

  (1)进气道喷射:空气/天然气进气总管混合、柴油引燃双燃料发动机,天然气直接喷射入进气总管,天然气与空气混合均匀,有利于充分燃烧。缺点是未经燃烧的混合气容易进入排气管,造成气体浪费和排气管爆炸等危险。

  (2)缸内直喷:发动机可燃烧较稀的混合气体提高经济性;发动机不安装节气门,节流损失小;可以抑制爆燃,可以采用较高的压缩比改善发动机经济性和动力性;可通过喷射正时、空燃比和点火提前角等手段优化匹配,改善燃烧过程。采用压燃式工作方式,喷入少量引燃柴油,该方式保留了柴油机高效率的特点,同时具有较好的机动性,天然气的使用又很好地达到了经济性和环保的目的。该类型的柴油机在原来发动机的基础上进行改造,只需增加一套燃气供给系统即可解决问题,这是目前柴油机改造和生产最主要的模式。

  根据实际装船使用的LNG-柴油双燃料发动机在运行中数据分析,LNG燃料替代柴油燃料平均替代率最高可达60%-70%[7]。同时,与柴油燃料相比,LNG-柴油双燃料发动机二氧化碳排放量可减少18%-22%,氮氧化物、硫氧化物减少均达到90%,颗粒物排放基本为零,运行成本减少30%左右。LNG-柴油双燃料发动机的使用很大程度上解决了船舶、汽车等运输工具的污染问题,同时也符合国家节能减排的要求。但因为LNG-柴油双燃料发动机需要在原燃油系统上增加一套供气系统,存在控制系统复杂,可靠性下降等问题,需要进一步完善。(作者单位:贵州交通职业技术学院)

  [1] 曲伟东.重型LNG发动机配气相位及凸轮型线优化[J].武汉:武汉理工大学,2010.

  [2] 王遇冬.天然气处理原理与工艺[M].北京:中国石化出版社,2007,221-222.

  [3] 顾安忠,鲁雪生.液化天然气技术手册[M].北京:机械工业出版社,2010,21.

  [4] 段长晓.LNG船主推进装置的选择和双燃料发动机的经济性研究[J].上海海事大学,2007.

  [5] 中国船级社.内河绿色船舶规范[M].北京:机械工业出版社,2013,21.

  20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年,生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。

  固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为1.2亿千瓦时和1.56亿千瓦时,年消耗秸秆20万吨。

  气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。

  在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段。

  液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。“十五”期间,在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。

  但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、甜高粱、木质纤维素等为原料的生物质燃料,既不与粮油竞争,又能降低乙醇成本。广西是木薯的主要产地,种植面积和总产量均占全国总量的80%,2005年,木薯乙醇产量30万吨。从生产潜力看,目前,木薯是替代粮食生产乙醇最现实可行的原料,全国具有年产500万吨燃料乙醇的潜力。

  此外,为了扩大生物质燃料来源,中国已自主开发了以甜高粱茎秆为原料生产燃料乙醇的技术(称为甜高粱乙醇),目前,已经达到年产5000吨燃料乙醇的生产规模。国内已经在黑龙江、内蒙古、新疆、辽宁和山东等地,建立了甜高粱种植、甜高梁茎秆制取燃料乙醇的基地。生产1吨燃料乙醇所需原料--甜高粱茎秆收购成本2000元,加上加工费,燃料乙醇生产成本低于3500元,吨。由于现阶段国家对燃料乙醇实行定点生产,这些甜高粱乙醇无法进入交通燃料市场,大多数掺入了低质白酒中。另外,中国也在开展纤维素制取燃料乙醇技术的研究开发,现已在安徽丰原生化股份有限公司等企业形成年产600吨的试验生产能力。目前,中国燃料乙醇使用量已居世界第三位。生物柴油是燃料乙醇以外的另一种液体生物质燃料。生物柴油的原料来源既可以是各种废弃或回收的动植物油,也可以是含油量高的油料植物,例如麻风树(学名小桐子)、黄连木等。中国生物柴油产业的发展率先在民营企业实现,海南正和生物能源公司、四川古杉油脂化工公司、福建卓越新能源发展公司等都建成了年生产能力l万~2万吨的生产装置,主要以餐饮业废油和皂化油下脚料为原料。此外,国外公司也进军中国,奥地利一家公司在山东威海市建设年生产能力25万吨的生物柴油厂,意大利一家公司在黑龙江佳木斯市建设年生产能力20万吨的生物柴油厂。预计中国生物柴油产量2010年前约可达每年100万吨。

  为了确保生物质能源产业的稳步发展,中国政府出台了一系列法律法规和政策措施,积极推动了生物质能源的开发和利用。

  本世纪初,为解决大量库存粮积压带来的财政重负和发展石化替代能源,中国开始生产以陈化粮为主要原料的燃料乙醇。2001年,国家计划委员会了示范推行车用汽油中添加燃料乙醇的通告。随后,相关部委联合出台了试点方案与工作实施细则。2002年3月,国家经济贸易委员会等8部委联合制定颁布了《车用乙醇汽油使用试点方案》和《车用乙醇汽油使用试点工作实施细则》,明确试点范围和方式,并制定试点期间的财政、税收、价格等方面的相关方针政策和基本原则,对燃料乙醇的生产及使用实行优惠和补贴的财政及价格政策。在初步试点的基础上,2004年2月,国家发展和改革委员会等8部委联合《车用乙醇汽油扩大试点方案》和《车用乙醇汽油扩大试点工作实施细则》,在中国部分地区开展车用乙醇汽油扩大试点工作。同时,为了规范燃料乙醇的生产,国家质量技术监督局于2001年4月和2004.年4月,分别GBl8350-2001《变性燃料乙醇》和GBl8351-2001《车用乙醇汽油》两个国家标准及新车用乙醇汽油强制性国家标准(GBl835l一2004)。在国家出台相关政策措施的同时,试点区域的省份均制定和颁布了地方性法规,地方各级政府机构依照有关规定,加强组织领导和协调,严格市场准入,加大市场监管力度,对中国生物质燃料乙醇产业发展和车用生物乙醇汽油推广使用起到了重大作用。

  此外,国家相关的法律法规也为生物质能源的发展提供保障。2005年,《中华人民共和国可再生能源法》提出,“国家鼓励清洁、高效地开发利用生物质燃料、鼓励发展能源作物,将符合国家标准的生物液体燃料纳入其燃料销售体系”。国家“十一五”规划纲要也提出,“加快开发生物质能源,支持发展秸秆、垃圾焚烧和垃圾填埋发电,建设一批秸秆发电站和林木质发电站,扩大生物质固体成型燃料、燃料乙醇和生物柴油生产能力”。

  除制定相应法律法规和标准外,2002年以来,中央财政也积极支持燃料乙醇的试点及推广工作,主要措施包括投入国债资金、实施税收优惠政策、建立并优化财政补贴机制等。一是投入国债资金4.8亿元用于河南、安徽、吉林3省燃料乙醇企业建设;二是对国家批准的黑龙江华润酒精有限公司、吉林燃料乙醇有限公司、河南天冠燃料乙醇有限公司、安徽丰原生化股份有限公司4家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;三是在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。

  为进一步推动生物质能源的稳步发展,2006年9月,财政部、国家发展和改革委员会、农业部、国家税务总局、国家林业局联合出台了《关于发展生物质能源和生物化工财税扶持政策的实施意见》,在风险规避与补偿、原料基地补助、示范补助、税收减免等方面对于发展生物质能源和生物化工制定了具体的财税扶持政策。此外,自2006年1月1日《可再生能源法》正式生效后,酝酿中与之配套的各项行政法规和规章也开始陆续出台。财政部2006年10月4日出台了《可再生能源发展专项资金管理暂行办法》,该办法对专项资金的扶持重点、申报及审批、财务管理、考核监督等方面做出全面规定。该《办法》规定:发展专项资金由国务院财政部门依法设立,发展专项资金的使用方式包括无偿资助和贷款贴息,通过中央财政预算安排。

  尽管中国在生物质能源等可再生能源的开发利用方面取得了一些成效,但由于中国生物质能源发展还处于起步阶段,面临许多困难和问题,归纳起来主要有以下几个方面。

  由于粮食资源不足的制约,目前,以粮食为原料的生物质燃料生产已不具备再扩大规模的资源条件。今后,生物质燃料乙醇生产应转为以甜高粱、木薯、红薯等为原料,特别是以适宜在盐碱地、荒地等劣质地和气候干旱地区种植的甜高粱为主要原料。虽然中国有大量的盐碱地、荒地等劣质土地可种植甜高粱,有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。目前,虽然在西南地区已种植了一定数量的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。因此,生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。

  (二)还没有建立起完备的生物质能源工业体系,研究开发能力弱,技术产业化基础薄弱

  虽然中国已实现以粮食为原料的燃料乙醇的产业化生产,但以其他能源作物为原料生产生物质燃料尚处于技术试验阶段,要实现大规模生产,还需要在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,一些相对成熟的技术尚缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

  巴西以甘蔗生产燃料乙醇1980年每吨价格为849美元,1998年降到300美元以下。中国受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本比较高,目前,以陈化粮为原料生产的燃料乙醇的成本约为每吨3500元左右,以甜高粱、木薯等为原料生产的燃料乙醇的成本约为每吨4000元。按等效热值与汽油比较,汽油价格达到每升6元以上时,燃料乙醇才可能赢利。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。以甜高粱和麻风树等非粮食作物为原料的燃料乙醇和生物柴油的生产技术才刚刚开始产业化试点,产业化程度还很低,近期在成本方面的竞争力还比较弱。因此,生物质燃料成本和石油价格是制约生物质燃料发展的重要因素。

  生物质能源产业是具有环境效益的弱势产业。从国外的经验看,政府支持是生物质能源市场发育初期的原始动力。不论是发达国家还是发展中国家,生物质能源的发展均离不开政府的支持,例如投融资、税收、补贴、市场开拓等一系列的优惠政策。2000年以来,国家组织了燃料乙醇的试点生产和销售,建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,积累了生产和推广燃料乙醇的初步经验。但是,由于以粮食为原料的燃料乙醇发展潜力有限,为避免对粮食安全造成负面影响,国家对燃料乙醇的生产和销售采取了严格的管制。近年来,虽有许多企业和个人试图生产或销售燃料乙醇,但由于受到现行政策的限制,不能普遍享受到财政补贴,也难以进入汽油现有的销售渠道。对于生物柴油的生产,国家还没有制定相关的政策,特别是还没有生物柴油的国家标准,更没有生物柴油正常的销售渠道。此外,生物质资源的其它利用项目,例如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始高,需要稳定的投融资渠道给予支持,并通过优惠的投融资政策降低成本。中国缺乏行之有效的投融资机制,在一定程度上制约了生物质资源的开发利用。

  中国经济的高速发展,必须构筑在能源安全和有效供给的基础之上。目前,中国能源的基本状况是:资源短缺,消费结构单一,石油的进口依存度高,形势十分严峻。2004年,中国一次能源消费结构中,煤炭占67.7%,石油占22.7%,天然气占2.6%,水电等占7.0%;一次能源生产总量中,煤炭占75.6%,石油占13.5%,天然气占3.O%,水电等占7.9%。这种能源结构导致对环境的严重污染和不可持续性。中国石油储量仅占世界总量的2%,消费量却是世界第二,且需求持续高速增长,1990年的消费量刚突破1亿吨,2000年达到2.3亿吨,2004年达到3.2亿吨。中国自1993年成为石油净进口国后,2005年进口原油及成品油约1.3亿吨,估计2010年将进口石油2.5亿吨,进口依存度将超过50%。进口依存度越高,能源安全度就越低。中国进口石油的80%来自中东,且需经马六甲海峡,受国际形势影响很大。

  因此,今后在厉行能源节约和加强常规能源开发的同时,改变目前的能源消费结构,向能源多元化和可再生清洁能源时代过渡,已是大势所趋,而在众多的可再生能源和新能源中,生物质能源的规模化开发无疑是一项现实可行的选择。

  必威 必威betway

  生物质产业是以农林产品及其加工生产的有机废弃物,以及利用边际土地种植的能源植物为原料进行生物能源和生物基产品生产的产业。中国是农业大国,生物质原料生产是农业生产的一部分,生物质能源的蕴藏量很大,每年可用总量折合约5亿吨标准煤,仅农业生产中每年产生的农作物秸秆,就折合1.5亿吨标准煤。中国有不宜种植粮食作物、但可以种植能源植物的土地约l亿公顷,可人工造林土地有311万公顷。按这些土地20%的利用率计算,每年约可生产10亿吨生物质,再加上木薯、甜高粱等能源作物,据专家测算,每年至少可生产燃料乙醇和生物柴油约5000万吨,农村可再生能源开发利用潜力巨大。生物基产品和生物能源产品不仅附加值高,而且市场容量几近无限,这为农民增收提供了一条重要的途径;生物质能源生产可以使有机废弃物和污染源无害化和资源化,从而有利于环保和资源的循环利用,可以显著改善农村能源的消费水平和质量,净化农村的生产和生活环境。生物质产业的这种多功能性使它在众多的可再生能源和新能源中脱颖而出和不可替代,这种多功能性对拥有8亿农村人口的中国和其他发展中国家具有特殊的重要性。

  随着中国经济的高速增长,以石化能源为主的能源消费量剧增,在过去的20多年里,中国能源消费总量增长了2.6倍,对环境的压力越来越大。2003年,中国二氧化碳排放量达到8.23亿吨,居世界第二位。2025年前后,中国二氧化碳排放量可能超过美国而居首位。2003年,中国二氧化硫的排放量也超过了2000万吨,居世界第一位,酸雨区已经占到国土面积的30%以上。中国二氧化碳排放量的70%、二氧化硫排放量的90%、氮氧化物排放量的2/3均来自燃煤。预计到2020年,氧化硫和氮氧化物的排放量将分别超过中国环境容量30%和46%。《京都议定书》已对发达国家分配了2012年前二氧化碳减排8%的指标,中国是《京都议定书》的签约国,承担此项任务只是时间早晚的问题。此外,农业生产和废弃物排放也对生态环境带来严重伤害。因此,发展生物质能源,以生物质燃料直接或成型燃烧发电替代煤炭以减少二氧化碳排放,以生物燃油替代石化燃油以减少碳氢化物、氮氧化物等对大气的污染,将对于改善能源结构、提高能源利用效率、减轻环境压力贡献巨大。

  从生物质能源的发展前景看,第一,生物乙醇是可以大规模替代石化液体燃料的最现实选择;第二,对石油的替代,将由E85(在乙醇中添加15%的汽油)取代E10(汽油中添加10%的乙醇);第三,FFVs(灵活燃料汽车)促进了生物燃油生产和对石化燃料的替代,生物燃油的发展带动了传统汽车产业的更新改造;第四,沼气将规模化生产,用于供热发电、(经纯化压缩)车用燃料或罐装管输;第五,生物质成型燃料的原料充足,技术成熟,少、见效快,可广泛用于替代中小锅炉用煤,热电联产(CHP)能效在90%以上,是生物质能源家族中的重要成员;第六,以木质纤维素生产的液体生物质燃料(Bff。)被认为是第二代生物质燃料,包括纤维素乙醇、气化后经费托合成生物柴油(FT柴油),以及经热裂解(TDP)或催化裂解(CDP)得到的生物柴油。此外,通过技术研发还将开拓新的资源空间。工程藻类的生物量巨大,如果能将现代生物技术和传统育种技术相结合,优化育种条件,就有可能实现大规模养殖高产油藻。一旦高产油藻开发成功并实现产业化,由藻类制取生物柴油的规模可以达到数千万吨。

  据专家预测估计,到2010年,中国年生产生物燃油约为600万吨,其中,生物乙醇500万吨、生物柴油100万吨:到2020年,年生产生物燃油将达到1900万吨,其中,生物乙醇1000万吨,生物柴油900万吨。

  阻燃剂是一种能够降低或抑制高分子材料可燃性的添加剂,用以提高材料抗燃性,主要用于阻止合成和天然高分子材料被引燃及抑制火焰传播的助剂。

  阻燃剂品种很多,按照分类不同,主要可以分为:按使用方式可分为反应型阻燃剂和添加型阻燃剂两大类。前者指与基材中的其它组分化学反应而形成的阻燃剂,或者为高聚物的单体,或者作为辅助试剂而参与高聚物的合成反应,最后成为高聚物的结构单元,多用于热固性高聚物;后者指只是以物理方式分散于基材中,多用于热塑性高聚物。

  按阻燃元素种类不同,阻燃剂常可分为卤系、有机磷系及卤-磷系、氮系、磷-氮系、锑系、铝-镁系、无机磷系、硼系、铝系等;按属性可分为有机阻燃剂和无机阻燃剂两大类,有机阻燃剂包括卤系(溴系及氯系)、有机磷系(含卤-磷系、磷-氮系)及氮系等,无机阻燃剂包括锑系、铝-镁系、无机磷系、硼系、铝系等。

  一个理想的阻燃剂应具有阻燃效率高、热稳定性好、光稳定性好、与被阻燃基材相容性好、本身低毒或基本无毒、燃烧时生成的有毒和腐蚀性气体量及烟量尽可能少、原料简单易得、工艺简便等特点。但实际上,目前许多阻燃剂很难达到理想的要求,近年来,追求高毒、低烟、无尘的阻燃剂已成为阻燃领域的重要课题及发展的主要方向。

  人类最早的阻燃历史可追溯至炼金术和罗马帝国时期,其阻燃成分很可能是铁和铝的二硫酸盐。1820年,Gay-Lussac研究发现:某些铵盐(如硫酸铵,磷酸铵及氯化铵)及这些物质与硼砂的混合物可用来阻燃纤维素织物。1913年, W. Perkin发现,采用锡酸盐(或钨酸盐)及硫酸铵处理织物,可以使织物获得了耐久的阻燃性能。1930年,人们发现了卤系阻燃剂(如氯化石蜡)与氧化锑的协同阻燃效应。

  1960年以后,美国、日本、西欧相继研制出了多种适用于热塑性塑料的填料型添加阻燃剂――溴系阻燃剂,20世纪70年代初至80年代中期,这类阻燃剂的生产和应用得到了蓬勃发展。

  我国阻燃剂的研制工作起步较晚,始于60年代后期,四溴乙烷是最早使用的一种含溴阻燃剂。80年代,随着对阻燃剂和阻燃材料的需求日益扩大,我国阻燃剂才得以迅速发展,但总体而言,远远落后于发达国家。与国外先进国家相比,我国阻燃剂科技含量低、生产规模小、品种单一、竞争力差。但随着化学合成技术、科学研究方法的发展及对基础设施投入的不断加大,我国阻燃剂市场需求不断增长,正处于一个新的发展阶段。

  溴系阻燃剂作为有机阻燃剂的一大类,主要由溴化剂(常用的是溴素)与有关有机物反应而得,其产量约占有机阻燃剂40%左右。

  目前,国外消耗量较大的溴系阻燃剂主要包括:四溴双酚A及其衍生物、十溴二苯醚及其同系物、脂肪族多溴化物、溴化芳烃、溴代酚及其衍生物及高分子阻燃剂等,其中,四溴双酚A是产量和消耗量最大的含溴阻燃剂,它可作为反应型阻燃剂用于环氧树脂、聚碳酸酷等,又可作为添加型阻燃剂用于ABs、酚醛树脂等;而十溴二苯醚是另一个产量大的添加型含溴阻燃剂。

  含溴阻燃剂由于具有其阻燃效能好、添加量少、加工性能优良、对高分子材料的物理、机械性能影响小、原料丰富、价格较便宜等优点,因此,溴系阻燃剂已经成为世界上发展最快、品种最多、产量最大、应用范围最广的有机阻燃剂之一,受到普遍重视。

  虽然溴系阻燃剂具有诸多优点,然而,溴系阻燃剂会降低被阻燃基材的抗紫外线稳定性,同时,在加工过程中、高温及燃烧条件下会产生毒性物质。1986年瑞士的研究人员研究发现,多溴二苯醚(PBDPE)及其阻燃的材料在510~630℃热分解时,会产生剧毒、致癌的多溴代二苯并f英(PBDD)和多溴代二苯并呋喃(PBDF),即出现所谓的“二f英(Dioxin)”问题。此外,溴系阻燃剂燃烧时,可能产生较多的烟雾、腐蚀性及有毒气体,主要包括HX、CO、CO2、SO2、NO2、NH、HCN等。

  由于溴系阻燃剂在高温及燃烧时易于产生毒性物质,因此,新型阻燃剂的发展迫在眉睫。目前,阻燃剂研究的方向主要包括:

  1)抑烟和消烟研究,即在阻燃剂中加入消烟剂,如铝、铜、铁化合物,使用超细氧化锑和胶体五氧化二锑,以硼酸锌代替三氧化二锑等;

  2)研究开发非卤阻燃剂,如磷系、磷-氮系、硅基、硼系等体系的研制与开发,但是除个别材料外,近期内难以找到性能/价格比与溴系阻燃剂相抗衡的阻燃剂或阻燃材料;

  3)研究开发新型溴系阻燃剂。小分子溴系阻燃剂因其易析出、易迁移、热稳定性差等缺点给环境造成极大地危害,而高分子型溴系阻燃剂因具独特的热稳定性和不喷霜、不迁移等优点,已逐渐成为人们研究开发的重点。因此,新型溴系阻燃剂的主要研究方向为:研究热稳定性高、耐迁移析出、耐候性好、毒性低、抗紫外的高分子型卤系阻燃剂,以解决其耐热、烟雾问题以及“二f英问题”。如DBDPE(十溴二苯乙烷)、溴化聚苯乙烯、溴化环氧树脂等新型溴系阻燃剂的广泛研究已表明这种趋向。

  [1]陶英丕.含溴阻燃剂的国内外进展.精细石油化工,1990:32-35.

  随着工业技术的日渐发达,我国对 RDF(垃圾衍生燃料)技术的研究也不断深入,并获得了较好的成就。之所以要对垃圾衍生燃料进行研究,其原因在于垃圾和污泥本身具有一定的热值,燃烧处理后能将部分热能加以回收,所以有必要对的大批量垃圾衍生燃料技术作深入探讨,以便实现固形燃料资源的转化和利用,做到资源节约。下面,结合RDF技术,对化工工艺中固形燃料的工业化应用作详细探讨。

  国内现有的垃圾燃烧处理方式有三种,即三种不同形式的垃圾燃烧炉,分别为回转窑式焚烧、机械炉排焚烧炉和流化床焚烧炉。在这三种焚烧炉中,机械炉排焚烧炉的技术相对比较成熟,但结构却比其他两种炉子要复杂,垃圾焚烧时很容易出现局部垃圾被烧透、局部垃圾燃烧不全面等问题,并且焚烧过程中容易发生事故。所以综合分析,目前性能最良好,最适宜垃圾焚烧的炉子流化床焚烧炉。

  下图1是流化床焚烧炉的工作原理。由图1分析可得,流化床焚烧炉在焚烧垃圾前需先在炉底铺垫一定厚度和一定范围的石英砂,俗称炉渣;然后在炉底部鼓入一定量的空气,将炉渣吹起,发生翻动,形成硫化状态。

  一般情况下,流化床焚烧炉形状取圆形塔体,并在塔体下设置分配板,便于分配气体,塔内主要用于装载耐火材料。流化床焚烧炉的基本温度控制在 800~900℃,特点具有较高的清洁性,且焚烧效率高、过量空气少,能在塔内实现对有害气体的控制,减少氮氧化物的生成。

  垃圾焚烧处理过程中,废物产生是主要目的之一,另外热量输出这一目的能为供电提供能量,为人们的生活、生产带来便利。高品位的电能为废物焚烧所产生的热能所提供,这样的电能传输距离远,而且受用户限制的少,其优点体现在废物吨度的降低和设备利用率的提高上,图2所示为典型的固废焚烧发电系统。

  在废弃物固形燃料发电系统中,废物是余热锅炉中的主要燃料,水作为中间介质被应用到转换能里。工质吸收了燃烧废物所产生的热量,而饱和水没有吸收热能,在此过程中会产生一种带有一定温度和压力的蒸汽,而且很热。这种蒸汽就能推动汽轮发电机发电,所以热能被有效的转化为电能。

  通过实践得知,从热能到机械动能的转变,然后再到电能地转变过程中,会损失很大能量。要想提高焚烧厂的综合利用率,将热电连供是一个有效的途径。也就是说发电到区域性供热或者再发电再到工业供热联合起来。原因如下:大概有67%的功率会被蒸汽发电过程中的发电机以及汽轮机占据,如果直接供热的话,就相当于用户得到全部热能。所以此种直接供热的方式更加的实用和有效率。

  固形燃料燃烧处理需要借助燃料焚烧炉,而为了设计出更为合理的燃料焚烧炉并在焚烧过程中将燃料工业化,在实际焚烧前必须对固形燃料作多次试验,准确了解垃圾或污泥等固形燃料的特性,如燃料的热解、固硫、固氯等,甚至包括燃料的反应动力学。

  上述内容中提到,固形燃料的最佳焚烧方式是流化床焚烧炉焚烧,原因是流化床焚烧炉具有结构简单、燃烧指数过高以及过量空气少等特点,且在焚烧时就能对有害气体生成作有效控制,减少有害气体的产生。因此,比起其他两种焚烧炉,流化床焚烧炉更具固形燃料处理优势。在设计流化床焚烧炉时,要注意保证流化床焚烧炉的基本特性,突出焚烧炉的高清洁、高效率优点。

  固形燃料焚烧应用时要尽量避免燃料对环境产生二次污染,这就要求严格控制好固形燃料焚烧工艺,保证燃料焚烧处理质量。生活中固形燃料所造成的二次污染主要有燃料焚烧烟气、炉渣。这两种二次污染产生的过程为:固形燃料合成或构成机构中加入了固氯、固硫剂,因此燃料燃烧时会释放出相应的烟尘、酸性气体,进而对环境造成污染。

  固形燃料焚烧中所产生的炉渣通常属无机物质,包括的类型很广泛,如金属氧化物、氢氧化物、碳酸盐等等。焚烧炉中炉渣数量或重量过多后,会对环境产生巨大的危害,尤其是一些内部含有重金属化合物的炉渣,对环境的危害更大。对于炉渣的处理,目前很多国家都采用填埋方式加以处理,这种方式虽然可行,但因为国家土地有限,并且炉渣中仍然含有少量有利用物质,所以还可采取更好的措施对炉渣进行处理,比如将炉渣当做资源,再次开发利用等。

  政府应该大力支持废弃物固形燃料技术的应用以及推广,假如政府和有关单位能在税收政策上给予优惠的话,会大大提高各单位对此技术应用的积极性,这样一来各种优势将会伴随着废物处理技术的应用而体现出来。应该努力借鉴和学习国外的先进科学技术经验,这能促进我国生产力的提高。如果能有严密的科学论证的话,废弃物固形燃料技术将会有广大的市场前景。

  综上所述,化工工艺固形燃料工业化应用一方面可提高固形燃料的热能利用率,实现能源节约,另一方面则可减少环境污染,实现环境保护。在本篇文章中,笔者着重论处了垃圾固形燃料工业化应用需要解决的问题,并得出了相关结论,希望对同行工作有所帮助。

  [1] 王艳.化工工艺残渣固形燃料搅拌混合设备设计[J].商品与质量,2010(SC):34.

  生物质能一直是人类赖以生存的重要能源,目前,全世界约有25亿人的生活能源依靠生物质能,仅次于煤炭、石油和天然气,居世界能源消费总量的第四位,在整个能源体系中占有重要地位。煤炭、石油、天然气是化石能源,究其根源也是由生物质能转变而来的。专家认为,生物质能极有可能成为未来可持续能源系统的组成部分。预计到本世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。因此,专家称生物质能为21世纪的绿色能源。

  目前,生物质能技术的研究与开发已成为国际重大热门课题之一,受到世界各国政府与科学家的关注。许多国家都制定了相应的开发研究计划。我国既是一个人口多的农业大国,又是一个经济迅速发展的国家,面临着经济增长和环境保护的双重压力。改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源,对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义,尤其对我国的农村地区更具有特殊意义。因此,生物质能优质化转换利用势在必行。

  第一,资源丰富。它是人类可以利用的最丰富的能源之一,我国是农业大国,农林废弃物特别丰富,可以说取之不尽,用之不竭。

  第二,开发方便。地球上,只要有农作物和树林的地方,就可以就地开发利用,农村更具有利用的价值。

  第三,清洁能源。在开发和利用生物质能时,原料易燃烧,污染少,灰分较低,废渣、废水、废气少,也没有噪音。更重要的是,不会影响生态平衡。三、开发适合国情的生物质能燃料和设备

  在加拿大、瑞典、芬兰等欧美国家,生物质能锅炉使用的燃料仍停留在木质颗粒燃料上,原因是农作物秸秆及野草质类的颗粒燃料含钾等成分高,容易结渣,他们现有的生物能供热设备和技术不能解决结渣问题,影响设备自动燃烧的正常运行,不得已摒弃秸秆燃料,使用木质燃料。国外专家的研究方向是用基因技术改良秸秆、野草类植物的成份含量,降低颗粒燃料的结渣成分,来保证生物质能锅炉的燃烧过程正常运行。我国利用生物质能如果直接引用国外现有的设备和技术,显然不符合国情,而基因改造秸秆的技术距离现实和大规模推广还远。

  北京老万生物质能科技公司对自己提出的要求是:既要利用国内现有的生物资源,又要解决自动燃烧的难题。科研人员从我国树木少、农作物秸秆多的国情出发,确定了生物质能锅炉以秸秆、树木类等为生物质燃料的方向。他们与国外专家合作,经过潜心钻研,克难攻坚,研制出了秸秆颗粒和块状燃料的科学加工技术,开发了采用这些燃料的自动燃烧生物质能锅炉。经过清华大学热能研究所和热能工程系联合检测,老万生物质能锅炉的燃烧效率达到99%,热效率达到86.07%,各项环保指标都达到了欧洲现行的排放标准。

  老万自动燃烧生物质能锅炉系列产品随后通过了国家农业部科教司主持、全国著名专家组成的鉴定委员会的鉴定。评价是设计独特,结构新颖,造型美观,自动供料,燃烧充分,属高新技术产品。其技术国内领先,达到国家先进水平。该技术在解决生物质燃料燃烧结渣和焦油处理上实现了重大突破,填补了我国生物质能高效利用和燃烧的空白。

  老万生物质能产品是目前国内外高效利用生物质能的佼佼者。其技术特点和主要优势有三点:

  (1)生物质燃料的高效性:老万公司研发的成型(颗粒、块状)燃料,是将农、林废弃物如玉米秸秆、棉花秆和锯末等,经过粉碎、烘干、筛选、高压成型制成的高密度颗粒燃料和压块燃料,容积密度大,1000~1100公斤/立方米,具有较高的强度。这种燃料表面细致光滑,发热量高达3700~4200大卡/公斤,起火速度快,燃烧效率达99%,热效率达86%以上。它的燃烧性能已经相当于中质烟煤,而硫和灰分等有害物质的含量却相当低,胜于烟煤。这种再生能源最清洁且廉价,国际公认是化石能源的最佳替代物之一。

  (2)锅炉的便利和安全舒适性:老万生物质能锅炉采用先进的自动控制清洁燃烧技术,核心技术在于燃烧器。燃烧器由主燃室和副燃室组成,采用二、三次风火焰扰动和独特的火焰导流混合燃烬技术。以温度为控制点,自动点火、自动进料、自动排灰,自动化程度较高,提高了燃料的燃烬率和锅炉热利用率。在运行中基本是每日加一次料和倒一次灰,不需要高深复杂的操作,非常便利。由于是常压运行,强制排烟,又配备了泄压阀、静音风机、屏蔽水泵和超温保护功能,安全性高,工作环境舒适。

  (1)烟气黑度和烟尘浓度低:燃料在燃烧中迅速释放的挥发成份没有得到充分燃烧时,未燃烬的含炭烟尘被烟气带出,就造成烟气黑度高,烟尘浓度高。老万生物质燃料的燃烧性能相当于中质烟煤,而二氧化硫和灰分等排放物却大大低于烟煤。同时,生物质能锅炉创造了先进的自动控制清洁燃烧技术和火焰导流混合燃烬技术,使燃料在炉内充分燃尽,减少烟尘的产生,消除了黑烟。2008年1月22日,北京京环科环境保护设备检测中心检验结果表明,老万锅炉的S02、烟尘排放、氮氧化物等化学排放指标远远低于欧洲环保标准,烟气黑度小于林格曼1级,二氧化碳排放减少100%!所有指标完全符合北京市《锅炉大气污染物排放标准》。

  (2)燃烧后的灰渣不存在二次污染:由于燃料全部使用秸秆生物质原料,在成型燃料的加工过程中也不添加任何化学成分和添加剂,所以,燃料燃烧之后全部变成了草木灰,既可当做肥料,也可回收作为建筑材料,不带来二次污染的问题。

  老万生物质能锅炉使用的燃料纯粹是颗粒燃料或压块燃料,极大地提高了燃料的燃烬率和锅炉的热利用率,其热能利用远高于燃煤的利用率。这一绿色的能源无论是用于取暖、炊事、洗浴,都非常适宜。

  以采暖为例,假设一家有150平米的房间面积,如果使用颗粒燃料,一个采暖期大约需要4~6吨,按850元/吨计算,每平米采暖费是23~34元。如果使用压块燃料,一个采暖期大约需要5~7吨,按500元/吨计算,每平米采暖费17~23元。如此看来,生物质锅炉取暖费和集中供暖、燃煤取暖费用相当,远远低于使用燃油炉、燃气炉和电采暖的费用。

  随着社会经济的发展,能源需求不断增加,同时能源使用生态化理念也应运而生,节能减耗清洁生产已经成为企业生产与政府研究的重要课题。在国家生态经济战略推进落实过程中,众多的小型燃煤火电因耗能与污染生产而关停,电力企业也在不断开展能源研发与资源利用技术创新工作,以求实现资源利用最大化。这种情况下,众多火电企业将目光投向了生物质改造利用,因此小型燃煤火电机组转换生物质燃料技术的可行性研究提上日程。笔者在本文中着重分析了小火电生物质改造转化技术的必要性与系统性,并就其应用风险进行了阐述。

  近年来,一些小型火电电力生产运营过程中存在着污染严重、耗能过多等弊端,这与当今生态和谐社会建设要求严重不符,因此小型燃煤火电发电机组进行生物质燃料改造具有必要性。此外,生物质改造能够降低生产成本,还能提升企业生产生态效益,具有明显的推广优势。

  与大型发电机组生产运营情况相比,小火电具有高耗煤、低产量、高污染、低经济效益的“两高两低”特征,因而被冠以“能源消耗与环境污染大户”的专称。随着近年来国家经济结构调整措施的落实,小型火电已经成为经济结构调整的重点整顿对象,并对一批严重耗能与污染的小火电实施了关停政策,迫于形势压力,小火电必须进行生产结构调整,并着重进行能源改造,加大新能源创新与应用研发。

  生物质燃料具体表现为柴薪等有形物质,区别于太阳能与风能等清洁可再生能源,生物质燃料的情节性主要取决于燃料改造技术,但是生物质具有一项明显的能源优势便是可再生并且可运输,这就为生物质开发应用提供了便利,也为小型火电进行生物质气燃料改造提供了条件。

  现阶段,国家不断提倡进行能源改造与清洁能源研发,这为生物质能源转化应用提供了政策支持,国家还对生物质能源转化应用进行经济政策规定,为生物质能源转化应用提供了良好的外部环境。小型火电进行生物质能源转化主要是进行就地取材,既节省了煤耗,还降低了污染,而且企业发展还享有国家基金与经济倾斜,能为企业经济效益的实现提供保证。

  小型燃煤发电机组进行生物质燃料转换具有明显的可能性。进行生物质能源改造需要资金少,而且还可以进行生物质燃料混燃,其中的各种改造方案都具有明显的可能性。小型燃煤发电机组改造活动集合理化设计、整合技术、试验验证等各环节于一体,因而生物质能源改造具有系统性。生物质能源改造技术的可能性与系统性决定了该技术具有可行性。

  现阶段,我国小型火电发电机组进行生物质能源改造主要有三类设计,每种方案设计都具有可能性。

  小型火电生物质燃烧利用主要分为生物质纯燃与生物质混燃两种,这两种应用技术都具有可能性。所谓生物质纯燃即指生物质直燃,该种技术应用不存在难点,但是具有一定的应用弊端。生物质直燃技术的应用首先要进行燃料机改进,以使燃料设备能应用于生物质燃烧,还要在生物质燃烧过程中进行纯燃弊端克服。生物质混燃技术在现阶段应用比较广泛,主要是将生物质与煤等碳化燃料进行混合燃烧应用,该技术能够有效降低氮氧化物的排放,而且在混燃过程中还能有效降低生物质的活性指数,有效降低温室气体的排放,具有良好的生态效益。

  小型燃煤发电机组生物质燃料改造还包含流化床燃烧技术设计与层燃炉燃烧技术设计,这两方面技术主要是根据生物质燃烧进行的技术设计。其中流化床燃烧技术主要是进行生物质的流态化燃烧,该技术能够保证生物质的充分燃烧,而且能满足生物质多元燃料混合燃烧需求,燃料普适性较高。流化床燃烧技术因为这些优势具有广泛的应用前景。而生物质层燃炉燃烧技术主要是应用层燃炉排进行生物质燃烧,该种燃烧技术应用时间较长,流化床燃烧技术便是基于该种燃烧技术进行的燃烧技术创新,相比于层燃技术,流化床技术能够有效降低火电运行成本,且操作设备简单,易于推广。

  小型火电生物质改造主要是针对生物质燃烧进行设备改造,基于此小型电厂进行了燃烧设备与系统改造处理,还进行了发电机组锅炉低成本设计改良。此间的设计与改造主要根据企业经济条件、设备运行情况实际情况进行的改良,具有明显的可行性。

  小型火电生物质改造作为一项系统化的技术,其技术要点从设计环节到技术可行性预测再到技术方案的确定都经过科学论证,有效提升了改造技术的可行性。

  在生物质改造技术中着重进行了燃料供应量设计与工艺系统改良,并基于小型火电设备运行与需求情况进行了锅炉参数设计。小型火电生物质改造转化中还进行了燃料可供性与入炉形式预测分析。生物质供应是影响企业生产运营成本的重要因素,确定合理化的生物质供应也能影响项目成败;而生物质入炉形式是影响生物质能否全面燃烧的关键因素,还能影响到燃烧设备的使用性能,不科学的入炉形式会缩短设备的使用寿命,还能影响企业生产运营的安全可靠性。

  小型火电生物质转换改造技术在应用中尚存在一定风险,主要表现为技术风险、市场风险、实施与风险等,这些风险的存在主要影响技术管理水平,需要进行有效的技术管理措施加强。小型火电生物质技术的技术风险主要表现为锅炉改造与生物质燃烧技术。我国的生物质改造技术尚未发展成熟,也并未形成与国际技术的接轨,因此技术设计与应用中管理措施的不到位引发风险不由必然性。此外,生物质改良转换技术还具有一定的市场风险与风险。该种风险主要是由于生物质的供应与生产回报具有众多的不确定因素,以致风险指数较高。

  小型火电生物质燃料改造与转换技术具有十分明显的可行性,但是也具有一定的风险性,虽然风险的存在并不会影响技术的实施与应用,但是我们仍应该加大技术的风险管理,以全面提升转换技术的科学化与可行性水平。

  而如今以氢为主要燃料的燃料电池技术的出现与成熟,同时兼顾了能源高效利用与低碳排放的优势,有望成为引领下一次全球能源利用与开发变革的中坚力量。

  1)燃料电池具备能源高效利用、清洁化利用双特性。以氢为主要燃料的燃料电池技术的出现与成熟,同时兼顾了能源高效利用与低碳排放的优势,符合长期以来全球能源体系进化的特性,有望成为引领下一次全球能源利用与开发变革的中坚力量。氢气具备无毒无害、高压氢气燃烧时不向周围扩散、燃烧点高等特性,与汽油和天然气相比氢气最易燃烧比例为29%,而汽油与天然气最易燃烧比例只需2%和9%。

  2)质子交换膜与固体氧化物燃料电池为产业研发与应用重点。考虑到不同燃料电池技术的特点与性能,目前,质子交换膜与固体氧化物燃料电池已经成为行业内应用推广的主要技术。其中,质子交换膜燃料电池以其低温运行、启动快、比功率高、体积小等优势已经成为全球燃料电池汽车领域的首选技术。而固体氧化物燃料电池以其较高的发电效率、运行温度高、使用非铂系金属等特点成为固定式发电领域的首选技术手段之一。

  3)美、日、欧配套政策完备,中国政府以市场换技术。现阶段,美国、日本以及欧洲地区已经完成了对于燃料电池应用、成本、补贴以及发展目标的制定。其中,日本政府对于家庭用燃料电池系统、燃料电池车、加氢站建设分别给予购置、成本40-50%的补贴;美国加州地区对于燃料电池汽车与加氢站建设也给与了优厚的税收减免;欧盟地区则计划建设加氢站以联通各国主要通道。而中国由于技术研发相对滞后,正在通过优厚的补贴政策以吸引海外优秀燃料电池企业携技术进入中国市场。其中2020年以前燃料电池汽车补贴不退坡等政策具有较强的吸引力,加拿大燃料电池龙头之一Ballard公司已经与国内企业形成战略合作关系。

  当前,关于锅炉生产的节能性和环保性,锅炉生产企业正加大研发力度,试图通过优化设计,将锅炉的节能和环保功能改造升级,以更好地适应消费者对节能和环保的消费需求。节能环保的优化设计,这是技术含量相对较高的研究课题,也是需要锅炉生产企业投入大量研发力量和资源的重要成本支出。不过,从未来市场竞争的角度考虑,加快锅炉生产转型升级,提升锅炉的科技含量、人文因素,是大有必要的。本文将重点围绕如何采取有效措施,在锅炉生产过程中,将锅炉的节能性和环保性提升,提出一些前瞻性、科学性、可操作性的对策参考。当然,这些对策参考,只是笔者的一家之言,也是方向性、理论性、原则性的一些分析探讨,能否最终转化为操作流程,从而产生经济效益和社会效益,有待企业结合自身生产实际,进行理论和实践的结合,推动锅炉生产的转型升级。

  锅炉要实现节能环保,主要是通过锅炉燃料的优化选择和燃烧方式的优化组合实现的。这是锅炉节能环保优化设计最基本的理论基础。在优化选择锅炉燃料方面,固体燃料和液体燃料是传统常用的燃料,比如,煤、石油等系列制成品,这些燃料的显著特征就是燃烧能力强,但是容易产生大量的有害物质,对大气和生活环境造成污染。因此,要实现锅炉的节能环保,就要采用气体燃料。在设计锅炉时,就要根据气体燃料的特点进行装置设计和生产。在燃烧方式的优化组合方面,除了要充分达到燃烧的必备条件外,比如有优质的燃烧物、有高效的助燃物、温度能够达到燃点,等等,还要能够实现燃料和空气的深度融合。在此基础上,对燃烧方式进行优化选择。比如,对于中小型锅炉而言,适宜采用层状燃烧;对于节能环保要求不高的,可以采用悬浮燃烧方式;而沸腾燃烧最节能环保,这是今后燃烧方式的重点。

  节能环保优化设计,可采用的具体措施有很多种。但从大类分析,一般有两类:第一类是通过安装节能环保设备。一般可以选择在油泵燃油室之间或者油咀之间安装节能环保设备。安装节能环保设备,比如常见的节能器,这可以促使碳氢化合物分子结构发生改变,从而让分子之间的距离拉大,把燃料的粘度降下来,这样就能够在燃烧前雾化燃料油,让燃料油更加充分地燃烧,大幅降低鼓风量,并把烟道的热量损失降到最低,从而实现节能环保的目的。实践证明,安装节能环保设备,能够将燃烧产生的一氧化碳、碳氢化合物等有害物质大幅降低,并大幅降低废气的含尘量。第二类是通过采用节能环保材料。锅炉生产商要严格按照国际节能标准,在生产锅炉时保证达到降耗标准。这就需要生产商采用节能环保的原料,不能为了降低生产成本,采购一些低质、耗能的材料。当然,锅炉能否实现节能环保的目标,这也需要使用单位树立节能环保意识,在采购锅炉时在考虑经济成本的同时,要考虑社会效益和生态效益,不能为了降低成本,就采购一些节能环保明显不达标的锅炉。当然,也要严格按照节能环保的要求进行锅炉操作,将节能环保的锅炉综合效益显现出来。

  根据上述节能环保的主要依据和因素,笔者认为,节能环保优化设计方案的制定,主要要做好七个方面的工作,即实时性能、耗差分析、实时出力、出力优化、考核统计、数据采集、性能计算。这七个方面的优化设计是一个完整的系统,其中,先从对性能的实时动态掌握开始,经过耗能差别的分析、燃料出力情况的调控后,对获取的数据进行考核统计,最后就可以计算出锅炉的性能如何。在此基础上,对节能环保优化设计的模式进行研究确定。一般有两种模式:一种是通过锅炉的优化控制系统,将节能环保的优化结果提供给负责锅炉运行人员。需注意的是,这种优化结果不是优化控制系统自行生成的,这需要人工进行操作。另一种则是将优化结果进行下载,这种下载是优化控制系统自带功能,并需锅炉有储存数据功能的装置。需要指出的是,要实现以上自动化的全程控制,一个基本的条件是,离不开计算机技术、控制技术以及通讯技术的支撑。因为,一整套节能环保优化控制系统,需要有一个中央处理系统,对各个环节进行控制和调整,将锅炉运行过程的各种信息、数据进行集中传送、处理和分析,第一时间让专业人员知晓,从而人工做出判断和采取必要措施,让节能和环保的性能正常发挥出来。

  应该说,随着时代的发展,节能环保技术的不断革新进步和人们对节能环保的渴求越来强烈。在这样的大背景下,推进锅炉节能环保的优化设计,这是大势所趋,也是具备了充足的发展条件。尤其是,针对我国现有的节能环保技术,根据锅炉生产、使用的现实状况,对节能环保优化设计的措施和流程进行改进和创新,具有十分重要的现实意义。未来几年,锅炉的生产制造将朝着清洁、节能、环保的方向发展,这就需要广大锅炉生产商和供应商,大力推进锅炉生产技术转型升级,大力投入科技研发力度,创新节能环保设计流程,将锅炉的节能性能和环保性能不断提升,从而不断开拓和抢占市场份额,满足人们对节能环保的需求。

  [2]高永地,梁德印,张华东.重油催化裂化余热锅炉节能技术改造[J].石油炼制与化工. 2011(05)

  [3]唐禹明.工业锅炉节能减排分析及对策[J].应用能源技术.2011(02)

  [4]周月华,孙丽娟.工业燃煤锅炉节能与环保技术探讨[J].黄河水利职业技术学院学报. 2011(02)

  摘要 在工业炉领域中,对现有的燃烧方法进行分析和改进,对新的燃烧方法进行探讨和实验,以不断提高燃料利用率和燃烧设备的技术水平。

  燃烧是指燃料中的可燃成分(碳、氢、硫及碳氢化合物)与空气中的氧结合后,在一定温度下发生剧烈化学反应放出光和热的过程。完全燃烧是指燃料中的可燃成份,在空气供应量和供应方法都很合适以致不冒黑烟全部燃烧。否则为不完全燃烧。

  温度是燃料燃烧的首要条件。燃料开始发生剧烈的氧化反应所需的最低温度称为着火温度。把燃料加热到着火温度以上所需的热量称为热源。燃料在燃烧室内着火的热源一般来自火焰和炉墙的热辐射以及与高温烟气的接触。由热源构成的炉膛温度必须保持在燃料着火燃烧温度以上,也就是 要具备足够高的炉膛温度,燃料才能连续燃烧,否则燃料就会着火困难,燃烧不起来,甚至断火。

  燃料在燃烧时必须要与足够的空气中的气充分地接触和混合。在炉膛温度足够高的情况下,燃烧反应速度很快,空气中的氧会很快消耗掉,必须要供给足够的空气,而实际运行中送入炉膛的空气是过剩的,但空气过剩量不能太多,要适当,以避免降低炉膛温度。

  从燃料中挥发出来可燃物质或细小的煤屑,随着烟气一边流动一边燃烧,若炉膛空间(容积)过小,烟气流动太快,烟气在炉膛内停留时间太短,就不能使可燃物和煤屑充分燃烧。尤其是可燃物(可燃气体、油滴)在未完全燃完以前就碰到锅炉受热面时,可燃物被冷却到着火温度以下而不能完全燃烧,结成碳瘤。同时,保证足够的燃烧空间,有利于空气与可燃物充分地接触和混合,使可燃物充分地燃烧。

  燃料没着火到全部燃尽过程,需要一定时间,尤其是层燃炉,燃料燃烧必须需要足够时间,燃烧颗粒越大燃烧时间越长。若燃烧时间不够,燃料燃烧就不完全。

  1)煤气与空气的混合是一种物理过程,需要消耗能量和一定时间才能完成。混合后的可燃气体,只有加热到它的着火温度时才能进行燃烧反应。在工业炉的条件下,点火以后,可燃气体的加热是靠其本身燃烧产生的热量而实现的。根据煤气和空气在燃烧前混合情况不同,可将煤气的燃烧方法分为有焰燃烧、无焰燃烧和半无焰燃烧。不管采用哪种燃烧方法,必须保证火焰在规定的燃烧条件下保持一定的位置和体积,即不回火,也不断火。为了防止回火,可燃混合气体从烧流出的速率必须大于某一临界速率,气流喷出速率与煤气成分、预热温度、烧嘴口径及气流性质等因素有关。在生产条件下为了防止断火,除了应使气体的喷出速率与火焰传播速率相适应外,还可以采取将燃烧通道做成突扩式以保证使部分高温燃烧产物回流到火焰根部。也可以采用带涡流稳定器或带点火环的烧嘴。在燃烧器上安装辅点火烧嘴或者在烧嘴前方设置点火作用的高温砌体也是防止断火的方法;

  2)对液体燃料的燃烧,多采用喷嘴雾化的方法。雾化过程是喷嘴燃烧的最初重要阶段,雾化后的油雾喷入空气流中就就形成雾化炬,并呈悬浮状态着火燃烧。在液体燃料燃烧的过程中当已雾化好的液体燃料喷入燃烧空间后,保证及时、正确的供应足够的空气量并与之充分混合将是保证液体燃料充分燃烧的关键。为了强化油雾与空气的混合,还可以采用提高调风器出口处空气流速方法。速度越高,油气混合就越好。因此目前一般调风器送出的气流流速都较高。为了不使大量高速气流直接吹向火焰根部将火焰熄灭,可以设置稳焰罩挡住大量的高速气流直接吹向火焰根部而使其绕流而过,防止火焰吹熄,也起到了稳定火焰、保证燃烧的作用。此外,维持足够高的温度,合理地布置喷燃器以及精心管理与调整都是保证燃油良好燃烧不可缺少的条件。工业炉中采用液体燃烧,运行操作方便,对环境污染小。但根据“以煤代油”的用能方针,目前只有少数秀特殊要求的工业炉才允许继续使用液体燃料。工业炉使用的液体燃料可以为柴油、原油和重油,但大多数是使用重油;

  3)固体燃料的燃烧实质上可归结为是碳的燃烧,甚至在燃烧气体燃料和液体燃料时,所分离出的炭黑和黑烟粒的燃烧也是属于碳的燃烧。因此,碳的燃烧实质引起了科研工作者极大兴趣与注意,进行着很多理论的和技术的研究工作。固体燃料的燃烧方法分为层状燃烧法、粉煤喷流燃烧法、旋风燃烧法和沸腾燃烧法四种。层状燃烧法的优点是燃料的点火热源比较稳定,因此燃烧过程也比较稳定。缺点是鼓风速率不能太大。层状燃烧法是一种最简单和最普通的块煤燃烧法。但从发展来看,层状燃烧法将不能满足生产要求,特别是大型工业炉的需要,而且不能完全机械化和自动化。虽然如此,在目前的中小型工业炉中,层状燃烧法仍占有一定地位。粉煤燃烧法是可以大量使用劣质煤和煤屑,甚至还可以掺用一部分无烟煤和焦炭屑。采用粉煤燃烧法时,炉温容易调节,可以实现炉温自动控制,并且可以减轻体力劳动强度和改善劳动条件。旋风燃烧是在20世纪40年代出现的一种新的燃烧方式,它是利用旋风分离器的工作原理,使燃料空气流沿燃烧室内壁的切线方向作旋转运动。在这种燃烧方式下,不仅改善了燃烧和空气的混合条件,而且还延长了燃料在燃烧室中的停留时间,因此可以将空气过剩系数降到1.05~1.0,并且可以燃烧粗煤粉或碎粒,从而可以简化甚至取消制份设备。其中沸腾燃烧有以下优点能受到各方面重视,发展很快。(1)燃烧稳定,对燃料适应性强;(2)沸腾床内传热强烈,可节省受热面钢材;(3)污染物排放物较少,对环境保护有利;(4)容热强度大,锅炉体积小。目前出现的能发挥沸腾燃烧技术优点,并能克服其不足的循环流化床技术正在广泛应用。随着沸腾燃烧技术的进一步发展,沸腾燃烧存在的问题将会不断的得到改善和解决。60年代以来,不仅一般工业锅炉中采用,某些中、小型电站锅炉甚至大型锅炉也开始采用沸腾炉。

  燃烧科学的应用是及其广泛的,对人民的生活、工业生产、国防技术以及宇宙航行等都具有十分重要的意义。为此需要一批科学家和工程师为燃烧科学的发展与应用做出不懈的努力。