BETWAY必威·(中国)官方网址
生物质燃料的优势范例6必威 必威betway篇
发布:2024-04-22 01:43:40 浏览:

  必威 betway必威必威 betway必威烟叶烘烤的优劣直接决定了烟叶的外观等级和价格,事关烟农的切身利益,也是卷烟工业对烟叶原料质量的要求。影响烟叶烘烤质量的主要因素包括温湿度、燃料、烤房结构等。前人对常规烟叶烘烤的研究较多,但大都集中于烤房结构优化[1-5]、不同装烟方式[6-8]、烘烤温湿度调节[9]、燃煤用量配比等方面,对生物质颗粒燃料的研究主要趋向于趋势研究[10-12],而对生物质用于烤烟的研究相对较少。生物质能源燃料与煤燃烧相比,具有低污染和洁净的特点。生物质燃料一般发热值在15 906.237~17 580.578 kJ/kg之间,灰分低于5%,还可作为优质钾肥还田利用[7],排放污染物可忽略不计,与煤相比,具有易点火、升温快、火力强、易于控制燃烧等特点。为了进一步明确生物质燃料烘烤对烟叶品质的影响,2014-2015年,对不同燃料烘烤的烟叶的外观品质、内在化学成分、评吸结果进行了综合比较。结果表明,生物质燃料烘烤不仅具有显著的环保优势,而且在提升烟叶的外观及内在品质上也具有明显的优势。

  2014-2015年在云南省寻甸县烟草科技试验基地、禄劝县九龙镇、撒营盘镇、屏山镇、石林县长湖镇5个试验点进行试验。供试品种选择同一农户、长势正常、成熟度相同的烟叶,供试烤烟品种为云烟87、K326及云烟99。

  收集烟秆、玉米秆晒干,充分粉碎之后以烟秆∶玉米秆=7∶3的比例混合,利用生物质颗粒机制成烟秆生物质颗粒燃料成品(颗粒直径8 mm,平均长度4~5 cm)备用。生物质颗粒燃料由寻甸县烟草科技试验基地加工制作。

  在生物质燃料烘烤烟叶的过程中,燃料的自动添加与温度、风机风力、加料间隔时间及加料量呈现动态变化的趋势。由表1可知,试验完成了生物质燃料烘烤烟叶的过程,烘烤后分不同烟叶类型取样检测。生物质新型烘烤机(KM-9)由云南名泽烟草机械有限公司提供。

  以常规密集型烤房、全新建设的生物质能源烤房、设备对接改造生物质烤房、农村土烤房4种类型进行烘烤对比。对不同燃料、不同类型烤房的烟叶样本进行了分类取样,抽取1 kg各种烤房类型条件下初烤烟叶样品C3F进行外观和内在化学成分的对比,并进行评吸比较。其中外观质量的对比主要以不同燃料所烘烤的烟叶上等烟的比例进行比较。内在质量及评吸结果以化学成分检测及评吸结果进行比较。

  由表2可知,相同品种、部位及成熟度的烟叶分别用2种不同的烘烤方法烘烤,在外观质量上,生物质烘烤的烟叶无论上等烟比例还是产值都显著高于以煤炭为原料烘烤的烟叶。以上部烟叶来看,上等烟比例约是煤炭烘烤的2倍,产值平均约提高4.17元/kg;以中部烟叶来看,上等烟比例约提升10.40%,产值平均约提高1.32元/kg。烟叶产值提升比例为5.40%~37.05%。

  由表3可知,云烟87在常规密集烤房和密集烤房改造的生物质烤房中,生物质燃料烘烤的上部烟叶上等烟比例高出煤炭烘烤34.6%,产值提升1.4元/kg;在土烤房和土烤房改造的生物质烤房中,生物质燃料烘烤的上部烟叶上等烟比例高出煤炭烘烤43%,产值提升2.5元/kg。使用煤炭作为燃料,常规密集型烤房烘烤出的上等烟平均比例较农村土烤房高出12.94%,产值平均高出2.88元/kg;使用生物质作为燃料,密集烤房改造的生物质烤房烘烤出的上等烟比例较土烤房改造的生物质烤房高出11.31%,产值平均高出1.71元/kg。由此可见,生物质燃料比煤炭烘烤,设备对接改造的生物质烤房比密集型烤房、农村土烤房烘烤在提高烟叶品质及产值上具有明显优势。

  由表4可知,云烟87在常规密集烤房和密集烤房改造的生物质烤房中,生物燃料烘烤的中部烟叶上等烟比例高出木柴烘烤15.5%,产值提升1.9元/kg;在土烤房和土烤房改造的生物质烤房中,生物质燃料烘烤的中部烟叶上等烟比例高出木柴烘烤17.4%,产值提升4.6元/kg。以相同燃料烘烤,其上等烟比例及产值略有差异,但差异不明显。

  由表5可知,云烟87在常规密集烤房和密集烤房改造的生物质烤房中,生物质燃料烘烤的中下部烟叶上等烟比例高出煤炭烘烤15.7%,产值提升3.56元/kg。

  由表6可以看出,云烟99在常规密集烤房和密集烤房改造的生物质烤房中,生物质燃料烘烤的中部烟叶上等烟比例高出煤炭烘烤3.97%,产值提升1.95元/kg。

  综上所述,以生物质燃料烘烤出的上等烟比例较煤炭烘烤的上等烟比例高2.54%~23.00%,干烟平均产值高0.98~4.96元/kg;以生物质燃料的农村土烤房设备对接改造烤房烘烤出的上等烟比例较以煤炭或木柴作为燃料的上等烟比例高3.97%~20.57%,干烟平均产值高0.08~5.13元/kg。由此可见,生物质能源烘烤可以明显提高烟叶的外观质量及产值。

  由表7~表9可知,在不同燃料、不同类型烤房条件下,把相同品种、相同部位、相同成熟度的烟叶分别烘烤,无论使用常规密集型烤房或农村土烤房,总体来看(检测结果中个别数值稍有偏差),以生物质作为燃料烤出的初烤烟叶烟碱含量均低于以煤炭或木柴作为燃料烤出的干烟叶,而以生物质为燃料烘烤的烟叶总糖、还原糖、总氮整体含量较高;使用相同的燃料(煤炭、木柴或生物质),常规密集型烤房烘烤烟叶烟碱含量均低于农村土烤房烘烤出的初烤烟叶。

  由表10可知,从15组不同燃料烘烤的初烤烟叶评吸对比结果可以得出,煤炭烘烤的品吸结果共计1 068.1分,生物质烘烤的品吸结果共计1 071分。生物质烘烤的烟叶评吸效果好于煤炭烘烤。具体表现为香气量增加,烟叶浓度、劲头均高于用煤炭烘烤的同类烟叶,余味舒适度上升,烟气透发顺畅,香气饱满厚实,刺激性小,细腻柔绵的特征明显,总体质量好。

  烘烤对比试验结果表明,将相同品种、相同部位、相同成熟度的烟叶分别烘烤,无论使用常规密集型烤房或是农村土烤房,生物质燃料烤出的烟叶外观品质更好,上等烟比例及产值均高于煤炭烘烤或木柴烘烤。生物质燃料烘烤出的烟叶化学成分在总糖、还原糖、总氮、水溶性氯离子、蛋白质方面总体偏高,烟碱、淀粉的含量整体有所降低,氯化钾含量水平基本保持一致。生物质能源烘烤通过生物质燃烧机、温湿度一体控制仪,实现烟叶烘烤的自动化控制,烘烤温湿度控制精准,烟叶的烘烤工艺得以完整实现,因此促进了烟叶的外观质量、内在化学成分向有利与卷烟工业需求的方向发展。同时,自动烘烤减少人工烧火温度上下波动较大的影响,降低了烤坏烟的比例。各类初烤烟叶工业评吸对比结果与上述检测结果基本一致,说明生物质能源自动化烘烤出的烟叶品质更符合卷烟工业的需求。

  生物质能源烘烤不仅可以节省人工成本,而且原料来源丰富、可以再生。利用生物质农业进行烟叶烘烤,可以明显提高烟叶的外观质量和内在品质,有益于环境生态保护。在煤炭能源逐渐减少、资源不断消耗的形势下,利用生物质新能源进行烟叶烘烤将是烟叶烘烤改革的重要发展趋势[8]。

  [1] 聂荣邦.烤烟新式烤房研究Ⅱ燃煤式密集烤房的研制[J].湖南农业大学学报,2000,26(4):258-260.

  [2] 吴中华,高体仁,夏开宝,等.QJ-Ⅱ型密集式自控烟叶烘烤设备的研究与开发[J].中国烟草科学,2006,27(4):9-12.

  [3] 严显进,程联雄,易忠经,等.节能炉具烤烟烤房的烘烤性能及效果[J].贵州农业科学,2014,42(5):232-235.

  [4] 殷 红,张 平.聚氨酯板式密集烤房的应用效果分析[J].安徽农业科学,2013,41(4):1745-1747.

  [5] 潘建斌,王卫峰,宋朝鹏,等.热泵型烟叶自控密集烤房的应用研究[J].西北农林科技大学学报,2006,34(1):25-29.

  [6] 武圣江,潘文杰,宫长荣,等.不同装烟方式对烤烟烘烤烟叶品质和安全性的影响[J].中国农业科学,2003,46(17):3659-3668.

  [7] 崔国民,汪伯军,许安定,等.密集烤房装烟室不同层距对烘烤性能及烟叶评吸质量的影响[J].园艺与种苗,2013(9):44-48.

  [8] 徐鸿飞,普恩平,王 涛,等.云烟-12型四层密集烤房的烘烤性能及其烘烤效果[J].作物研究,2014,28(6):642-646.

  [9] 罗汝林.基于模糊控制的烟叶烤房温湿度控制系统设计[D].辽宁大连:大连理工大学,2006.

  [10] 苏亚欣,毛如玉,赵敬德.新能源与可再生能源概论[M].北京:化学工业出版社,2006.

  生物质能是我国“十二五”期间重点发展的新兴能源产业之一,按我国提出的2020年非化石能源占能源消费总量15%的目标初步估算,到2020年我国生物质能装机总量将达3000万千瓦,沼气年利用量440亿立方米,生物燃料和生物柴油年产量达到1200万吨。

  截止2013年底,中国生物质能并网发电装机量779万千瓦,预计2014年底,生物质发电装机将有望达到1100万千瓦,上网电量有望达到500亿千瓦时[1]。从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

  生物质直接燃烧发电是指把生物质原料送入适合生物质燃烧的特定锅炉中直接燃烧,产生蒸汽带动蒸汽轮机及发电机发电,用于发电或者热电联产。国内生物质直接燃烧发电的锅炉主要有两种:炉排炉、循环流化床锅炉。采用生物质燃烧设备可以快速度实现各种生物质资源的大规模减量化、无害化、资源化利用,而且成本较低,因而生物质直接燃烧技术具有良好的经济性和开发潜力。

  生物质气化发电是指生物质在气化炉中气化生成可燃气体,经过净化后驱动内燃机或小型燃气轮机发电。气化炉对不同种类的生物质原料有较强的适应性。内燃机一般由柴油机或天然气机改造而成,以适应生物质燃气热值较低的要求;燃气轮机要求容量小,适于燃烧高杂质、低热值的生物质燃气。

  生物质混合燃烧发电是指将生物质原料应用于燃煤电厂中,和煤一起作为燃料发电。生物质与煤有两种混合燃烧方式: 一种是生物质直接与煤混合燃烧,生物质预先与煤混合后再经磨煤机粉碎或生物质与煤分别计量、粉碎。生物质直接与煤混合燃烧要求较高,并非适用于所有燃煤发电厂,而且生物质与煤直接混合燃烧可能会降低原发电厂的效率。第二种是将生物质在气化炉中气化产生的燃气与煤混合燃烧,即在小型燃煤电厂的基础上增加一套生物质气化设备,将生物质燃气直接通到锅炉中燃烧,这种混合燃烧方式通用性较好,对原燃煤系统影响较小。

  生物质与煤混合燃烧发电技术少,发电效率决定于原燃煤电站的效率.其中生物质气化混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强[2]。由于气化发电技术关键设备―小型低热值燃气轮机技术尚未成熟,对10 MW以上的生物质发电系统而言,比较有优势的技术是直接燃烧发电[3]。对10 MW以下的生物质发电系统而言,气化一余热发电系统效率远高于直接燃烧发电系统,具有更大的优势。另外,生物质直接燃烧发电技术比较成熟,但在小规模发电系统中蒸汽参数难以提高,只有在大规模利用时才具有较好的经济性,比较适合于10 MW以上的发电系统。生物质混烧发电技术在已有燃煤电站的基础上将生物质与煤混烧发电,混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强,成本是三类技术中最少的,但可能降低原燃煤电站效率。

  自2006年以来,我国生物质直燃发电开始进行商业化运行,国产循环流化床燃烧技术已成为生物质直燃发电市场的主导技术。循环流化床内可采用SNCR脱销,脱硝率可达50%以上。虽然生物质燃料含硫量较低,但实际SO2排放浓度在200mg/m3以上,炉内可以加石灰石脱硫,在脱硫效率达到70%时,即可满足国家标准的要求。对灰熔点较低的生物质,如油菜秆、棉花杆等,燃烧此类生物质的锅炉,蒸汽温度不宜提的过高,除非有很好的防积灰、腐蚀的措施作为保障。此外,生物质水分很高,着火推迟,导致不完全燃烧,炉排上未燃尽的生物质含碳量很高,需要增加炉排长度,提高燃烧效果。

  生物质气化发电中含焦油废水无害化处理是制约气化发电的瓶颈,国内外研究结果均提出采用有机溶剂作为燃气净化介质,避免二次水污染。循环流化床气化技术已有较好的基础,在循环流化床中进行生物质气化,气化温度控制在950~1000度,可以获得中值热燃气,同时彻底解决焦油问题,燃气净化后实现燃气内燃机-蒸汽联合循环,发电效率可达30%以上,在此基础上研发加压(30atm)循环流化床生物质气化技术,采用燃气内燃机-蒸汽联合循环,发电效率可达40%。

  双床气化技术是采用循环流化床与鼓泡床双床组合技术技术,将生物质燃料送入鼓泡床内,气化热源为循环流化床分离下的高温灰,流化介质为高温水蒸气或气化气。循环流化床燃烧气化室送来的半焦,产生高温烟气,烟气经分离后进入鼓泡床作为气化室热源,分离后的高温烟气进入余热锅炉,加热蒸汽进行发电。气化室反应温度控制在650~850度,产生的燃气经气固分离、净化后送内燃机发电,内燃机尾气经余热锅炉吸热后产蒸汽送蒸汽轮机发电。燃气中焦油通过闭式循环水水洗系统,经有机溶剂萃取后回收焦油,废水采用膜技术处理后达标排放。

  在各类生物质发电技术中,直燃生物质开发利用已经初步产业化,混烧发电技术的经济性最好,其发电经济性决定于原电厂的效率,而且会对原电厂有一定的影响。生物质气化发电技术的发电规模比较灵活,较少,适于我国生物质的特点,但是技术还不成熟。从产业整体状况分析,生物质发电及生物质燃料目前仍处在政策引导扶持期。

  [1]水电水利规划设计总院和国家可再生能源信息管理中心.2013中国生物质发电建设统计报告[R].北京:国家可再生能源中心,2014.

  [2]李利文.生物质能发电模式探讨[J].内蒙古科技与经济,2009(19):71-75.

  用于工业生产的锅炉更注重高效率、低污染、自动化、低成本(金属消耗量);而生活锅炉则追求低污染、自动化、安全可靠。本文对供热锅炉的发展趋势进行简要的分析。

  我们知道,锅炉燃用动力燃料。所谓动力燃料是指除了其燃烧放热可供利用外,在其他方面没有更大经济价值的燃料,主要是劣质燃料。由于国情原因,多年来,我国锅炉一直被限制使用劣质燃料。我国对供热锅炉的燃料政策在1990 年以前主要倾向于以煤为主,例如1988年底,国家煤代油办公室还发出名为以煤代油、节油的奖励办法和补贴标准的文件。随着高层民用建筑的发展、高新经济技术开发区的建设、环保要求的提,以及我国勘探到的天然气和煤层气储量的增加和我国进口能源政策的拓宽都促使供热锅炉中燃油和燃气的比例相应提高。采用燃油或燃气供热锅炉不仅可以提高锅炉热效率,而且对于改善烟气排放污染物具有显著效果。

  锅炉在向燃用优质燃料的方向发展的同时,也向燃用品位更为低劣的燃料的方向发展。众所周知,随着工业化进程的加快以及人民生活水平的提高,城市垃圾已经严重影响了人类的生存环境,也困扰了城市的发展。传统的垃圾处理方法是填埋、焚烧和堆肥。而对垃圾的更进一步处理,就是垃圾能源化。这巳成为当前世界处理垃圾的热点,其中以垃圾为燃料的垃圾锅炉也成为锅炉制造业中的热点。

  垃圾在锅炉中直接燃烧是各国垃圾能源化的主要手段。目前尚存在的难题是受热面管子的高温腐蚀,其中主要是塑料等垃圾中的C1和Na、 K等元素对金属的腐蚀;以及不可燃物质从炉内的排出问题。各国所采用的炉型繁多,但主要有流化床燃烧锅炉、回转窑式锅炉和机械炉排锅炉等三种。

  采用流化床燃烧锅炉时,垃圾需进行预分选和破碎,然后送入流化床内燃烧。此类锅炉预处理费用高,炉前易臭味外逸,影响环境。机械炉排锅炉是目前用得最广泛的一种垃圾锅炉,其关键是炉排的结构和布置。炉排片一般用高铬钢浇铸后精加工制成,布置成水平或倾斜。炉排可分为预热段、燃烧段和燃尽段,并由固定炉排和运动炉排相隔组成。

  鉴于煤炭仍是锅炉主要燃料但对环境污染严重的事实,各国都竞相开发洁净煤技术。所谓洁净煤技术是指从煤炭开发到利用的全过程中,旨在减少污染排放与提高利用效率的加工、燃烧、转化及污染控制等新技术。主要包括煤炭洗选、加工转化、先进发电技术、烟气净化等方面的内容。

  煤炭洗选是指通过物理或化学的方法,降低原煤中灰分、硫分、矸石等杂质的含量,并按不同煤种、灰分、低位发热量和粒度分成若干等级,以满足不同用户的需要。煤炭经洗选后可显著低灰分和硫分的含量,减少燃烧后烟尘、二氧化硫等污染物的排放。

  配煤技术是将不同品质的煤经过筛选、破碎,按比例配合等过程,并辅以一定的添加剂,以改变动力煤的化学组成、岩相组成、物理特性和燃煤性能,达到充分利用煤岩资源、优化煤炭产品结构、煤质互补,适应用户燃煤设备对煤质要求,提高燃煤效率和减少污染物排放。

  型煤是用一种或数种煤与一定比例的粘结剂、固硫剂等,加工成一定形状尺寸和有一定理化性能的块状燃料或原料。型煤也可以是粉煤及一定比例的煤泥等其他低位发热量较低的燃料或废弃物,加上粘结剂、添加剂加工成型煤的,有的燃烧特性还超过了原煤的燃烧特性。

  由于煤炭资源丰富,水煤浆的加工工艺简单,与煤炭气化、液化相比, 少、成本低。作为代油燃料,许多国家基于长期的能源战略考虑,将其作为以煤代油的燃料技术进行研究、开发和储备,且已有商品化使用。

  近几十年来,大气中的各种温室气体浓度正不断增加,它们对全球气候变化的影响已引起了人们广泛的注意。各种温室气体中,以二氧化碳的危害最为严重。大气中的二氧化碳含量在最近20年中已增加了 27%。据估计目前每年约有260亿!二氧化碳被排入大气,其中大约有80%是由于煤、石油、天然气等矿物燃料的燃烧而引起的。

  从长远观点看,二氧化碳零排放技术显然是解决问题的最根本途径。在这些零排放技术中,生物质能又是其中最具潜力的。

  减少化石燃料的使用,提高能源的转换效率,积极发展软能源,是降低大气中二氧化碳含量的直接方法。二氧化碳的排放与动力设备的热效率有着直接的关系,例如,对相同的供电负荷而言,若发电机组的效率提高一倍,就意味着所排放的二氧化碳减少了一半。在不久的将来,燃用化石燃料的发电机组最大效率可达45%,最高限度可望达到47%。与现在的发电效率相比,尤其是与效率低下的发电机组相比,通过提高效率来降低二氧化碳排放是有着重要现实意义的。

  除了通过削减化石燃料的消耗量来降低二氧化碳的排放量外,还有控制二氧化碳的排放,或者说吸收、分解脱除或分离已生成的二氧化碳。尽管目前有许多烟气净化方法可以用来控制氮氧化物和硫氧化物的排放,但还没有有效的控制二氧化碳排放的方法。

  粉煤灰是煤燃烧排放出的一种粘土类火山灰质材料。狭义地讲,它就是指锅炉燃烧时,烟气中带出的粉状残留物,简称灰或飞灰;广义地讲,它还包括锅炉底部排出的炉底渣,简称炉渣。灰和渣的比例随着炉型、燃煤品种及煤的破碎程度等不同而变化,目前世界各国普遍使用的固态排渣煤粉炉,产灰量占灰渣总量的80%~90%。电厂灰渣的大量排放,促使对粉煤灰资源的综合利用的重视。近年来,粉煤灰的综合利用已逐渐形成了一个新兴产业。

  目前,粉煤灰主要用在建筑工程和基础工程中。在精细化工利用方面研究得也较多。

  总之,供热锅炉技术已发展到了这样水平:燃料向多元化、洁净化方向发展;水仍是占绝对优势地位的供给锅炉的工作介质,但近年来,由于加热工艺的要求,也出现了以有机介质为锅炉工作流体的锅炉;工作压力的范围得到拓宽, 相继出现了真空相变供热锅炉,小型超临界压力贯流锅炉等;供热锅炉的容量向两个方向上都有很大发展,小容量的家用壁挂式燃油燃气锅炉在我国得到快速发展,同时,由于集中供热的要求,供热锅炉的容量大幅度提高,并且向热电联产、热电冷联产方向发展;由于对提锅炉效率、节约能源的日益重视,排烟温度很低的冷凝式锅炉得到发展;锅炉自动控制水平、智能化水平得到空前提高。

  现代物流业就是指原材料、产成品从起点至终点及相关信息有效流动的全过程,其利用先进的计算机信息技术、互联网技术及现代管理科学,打破了原有传统物流业务运输环节独立生产环节之外的行业界限。现代物流通过构建统一的服务网络,实施信息化管理,通过标准化服务和主动服务,实现整体的增值服务。其与传统物流产业的根本区别就在于:它将在物流链上的如生产、加工、仓储、运输、销售等各个节点与环节通过实物流与信息流的有机结合实现无缝衔接,进而实现整个物流业务的全程优化,最终实现缩短物流时间、降低物流费用,这也是当代物流产业迅速发展的主要原因。目前,现代物流的发展趋势呈现出全球化、多功能化、系统化、信息化和标准化的基本特征。

  电力企业燃料供应链一般模型就是:由煤炭生产企业发起,途经煤炭加工企业、煤炭贸易企业截止于煤炭消费企业(火力发电厂),也存在煤炭生产企业直接销售给电厂的最直接供应模式。但在燃料紧张、煤价上涨的市场环境下,中间环节的煤炭贸易企业会增加多个,造成供应链过长,物流成本增加。由于煤炭贸易企业良莠不齐,就增加了供应链管理的复杂性与难度。

  发电企业的燃料物流是包涵燃料采购、运输、验收、存储、掺烧、资金等信息为一体的大宗物资服务活动。具体来看其煤炭采购物流主要包括物流节点多、物流线路长、原材料物流独立、作业场所变动频繁等特点,因其物流网络链线长、链接多,并且链接复杂,且各个链接又归属不同行业的不同企业,各个环节协作的难度大,更增加了管理的复杂性。因此利用现代物流技术平台,发展电力企业煤炭物流,对提高采购效率、降低燃料采购成本、增煤炭稳定供应能力、保障企业安全生产、提高经营成果具有重要意义。

  发电企业作为高技术、高知识层次密集行业,随着现代管理技术的不断提升和计算机技术的成熟应用,将以信息化管理为主要特征的现代物流管理应用到燃料供应已成为可能。

  发电企业首先应通过广泛的市场调研及信息的采集,经过严谨科学实验、精确的数理论证,从燃料计划、采购、验收、储存、掺配、燃烧等各个环节进行合理分析,得出在满足生产要求的前提下,以综合成本最低为原则,最优掺配方案为指导方向确定采购电煤的采购计划,包括采购电煤的指标、煤种和数量,争取采购成本最低。

  在煤炭形势紧张、供不应求的大环境下,随着煤炭价格的水涨船高,燃料成本占到发电企业的70%以上,发电企业完整的燃料成本体系应包括直接的采购价格、运输成本、储存成本、经济使用的效能成本(即所采购的燃料在适用时期能被高效利用、确保锅炉安全稳定燃烧,满足锅炉带负荷的需要),同时应考虑随着国家对发电企业超低排放的要求,企业满足脱硫脱销改造,降低NOX和SO2排放的,充分考虑煤炭除发热量指标外,硫分、灰分、挥发分及灰熔点指标影响的价格因素,因此发电企业建立的价格评价体系不仅要能反映出供求关系,还应综合考虑资源稀缺程度和环境损害成本带来的影响,通过完善的价格体系引导生产和需求企业规避市场风险,引导供需双方强化合同监管和质量检测管理,严格按照合同约定进行交易。同时为了比较不同供应商、不同地区、不同质量来煤的价格高低以及发电单位成本的可比性,还应统一将天燃煤格按热值换算成标煤(热值为7000大卡/千克的煤)的价格,以标煤单价高低为标尺进行评价及考核。因此燃料实际价值应是其标煤单价而不是原煤价格,燃料的比质比价,实际上是标煤单价的比较。

  在现燃料供应环境下,电力企业应该做好燃料供应链的优选工作,有选择的增加供应链的宽度与广度,减短供应链的长度与深度,增加供应的安全性与稳定性,降低单一供应渠道的受限性和脆弱性。为做好燃料供应链的优选工作,做好燃料供应商的管理工作是前提。供应商的管理工作实际上解决了企业选择好煤源的问题。

  电力企业要加强燃料供应商的管理,通过建立主要包括价格、质量、兑现率、供应能力等方面的供应商评价体系和评价机制,对供应商的基本情况、类别、采购区域、煤炭种类、运输方式、主要业绩等都记录在案,依据评价结果动态调整供应商管理库,对供应商实施有效的监督和管理,实现优胜劣汰,建立长期稳定、信誉度高的供应商队伍。

  随着国家及地方政府去产能政策的持续出台及276工作日的实施使煤炭产能持续得到控制,影响煤炭市场总体资源相对减少,而此同时煤炭行业资源集中度不断得到提高,企业间价格联合更加巩固,相反在同区域却隶属不同集团公司的发电企业,为了各自的利益,相互争夺煤炭资源,形成“窝里斗”,电、煤双方形如“伸着指头”与“握着拳头”的两个拳击手的较量,强若力判。因此电力企业应改变依靠煤炭企业供应燃料的固有传统,审时度势改变单纯依赖煤炭企业供应的格局。

  在现燃料供应环境下,建立大型配煤中心对电力企业发展煤炭物流,提高采购效率、降低采购成本、增强煤炭稳定供应能力、保障火电企业生产安全具有重要意义。实行煤炭集中采购和供应,建立专业化的采购公司,可以充分发挥区域资源互动、互助的作用,形成合力,实行统一定价、统一订货、统一计划、统一调运、统一结算 ,避免一个集团或区域公司内部同行竞争,增加企业抵御市场风险的能力同时,更好的优化电厂煤炭结构,有效的控制各项电煤采购物流成本。

  随着煤炭企业与电力行业改革体制的不断深化,电煤价格越来越公开透明,控制燃料成本、增加经济效益单纯依靠降低单一矿点或供应商的煤价已不现实,而是依照“价值思维、效益导向”的理念下,既一切生产经营活动的优劣、成败的最终评价标准就是:是否产生经济效益!配煤掺烧是电力企业积极适应市场变化,追求企业效益最大化,尤其是电力老企业谋求生存发展, 优化煤源结构的必然选择。只有通过科学的配煤掺烧方案,提供正确燃料采购供应依据,依靠调整燃料采购结构取得综合煤价的优势,才能在日益激烈的竞争环境中立于不败之地。配煤掺烧工作的总体目标是:在满足安全、环保的基础上,科学掺配,实现综合效益最大化。为此要做好以下几方面工作:

  1.认真调研,摸清本企业可供采购的煤源资料,充分考虑各煤种电煤的掺配,进而确定煤源结构;

  2.精心组织,做好每台机组的锅炉热力性能试验、配煤掺烧试验、数学建模、经济性评价与分析等工作,研究确定不同季节、不同时段典型工况下的配煤掺烧方案,确保机组运行稳定、排放达标、综合标煤单价最低;

  3.根据企业的具体情况,制定具体的煤场存储方案以及配煤、输送方式,确保掺配结果达到要求;

  4.燃料管理部门要与生产、计划等部门建立互动协调机制,及时沟通信息,时时调整配煤掺烧方案;

  5.依托燃料信息系统,将燃料供应、验收、耗用等体系完整的结合起来,确保配煤掺烧方案和燃煤采购方案的科学性、准确性、及时性,最大限度降低燃料成本。

  在了解固体氧化物燃料电池之前,我们需要先知道什么是燃料电池。从外观上看起来,燃料电池就像是一个蓄电池,有阴极、阳极也有电解质。但它们最大的不同之处在于,蓄电池是一个储电装置,燃料电池是一个发电装置,它能够让具有可燃性的燃料与氧反应产生电。因此只要有持续的燃料供应,燃料电池就能源源不断地产生电力。

  燃料电池最大的优势是高效和环境友好。目前普通燃油发电机只能把18%的化学能转化为电能,如果是汽车发动机,其最终转化率还不足15%。相比之下,不少燃料电池都可以实现30%到50%的转化率。高效率意味着燃料电池能够在消耗更少燃料、产生更少污染的情况下,产生与传统发电厂相同的电量。

  固体氧化物燃料电池是新一代燃料电池,能够在高温下直接将储存在燃料和氧化剂中的化学能转化成电能。无论是氧气、沼气、氢气还是柴油、汽油,都可以作为其发电的燃料。与其他燃料电池相比,固体氧化物燃料电池还具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点。着眼于小放眼于大

  固体氧化物燃料电池是一种很有前途的技术,能够提供清洁高效的能源。到目前为止,大多数人都将注意力集中在能产生1兆瓦或更多电力的、可取代传统发电站的较大系统的研究上,以期产生突破性的成果。为何西北太平洋国家实验室的科学家非要剑走偏锋,将注意力集中在小系统的研发上呢?

  该实验室固体氧化物燃料电池项目首席工程师文森特·斯普瑞克解释说:“因为小系统也有优势,有时候甚至还能胜过大系统。”家庭和社区用户就是这样一个实例:如果安置大型系统,其产生的电力将超过附近地区的耗电量,如此一来就必须通过输电线路将其输送到其他地方。而这一过程必然会造成一些电力的损耗。另一方面,小系统更加轻便灵活,安装位置可以更靠近用户,输送成本和损耗会更低,如果需要的话还能将其集成起来形成更大的系统。

  为此,科学家们提出了一个设想,这个小型发电系统既要在效率上超过50%,又要在需要时能够轻松扩展进行分布式发电。

  为了实现这一目标,让小型系统产生接近甚至高于大型系统的效率,研究人员采用了两项名为微通道和燃料循环的工艺。

  固体氧化物燃料电池由陶瓷材料制成,分为正极、负极和电解液三个层次。工作时,经过压缩的空气预热后首先被泵入作为负极的外层,空气中的氧气会变成带负电荷的超氧阴离子。而后负极和内部的电解质层相接,氧离子穿过电解液达到正极层,在那里氧离子与燃料发生反应产生电及副产品蒸汽和二氧化碳。

  但此前的方法是让蒸汽直接暴露于燃料电池之中,这会导致燃料电池中的陶瓷层受热不均甚至损坏。新研究中,科学家们采用了一种微通道技术,让蒸汽从外部完成和燃料电池的初步反应,不但减少了电池的损坏,还增加了反应的表面积,提高了反应效率。通过该技术,反应过程中的余热和废气也能重新得到利用,又进一步减少了燃料的消耗。

  山西是煤炭大省,燃煤取暖是最普遍的形式,但其带来的环境污染也不容小觑。因此,研发节能环保微排锅炉、炉灶、生物质燃料等等来防治环境大气污染具有重要意义。

  自2001年以来,朔州市朔城区荣申达新能源技术服务有限公司在创始人席礼工程师的带领下,顺应了当今世界和我国低碳排放保护环境的大趋势,积极探索新能源的研制与开发,经过不懈努力,现已成为一家专业从事北方燃煤地区大气污染防治、物质气化环保节能炉及成型燃料气化、固化研究开发、生产销售于一体的公司。公司拥有生物质燃料成型技术、生物质无烟系列炉灶锅炉产品技术等20多项国家专利,技术路线独特,工艺先进,属国内首创。其开发的“荣申达”牌生物质成型燃料及无烟炉具等系列产品具有如下特点:半气化、层燃、直燃、返烧、正反烧,多回程,二次、多点高温加氧助燃,无烟、节能;生物质能源、煤炭两用;自然、动力配风两用;结合螺旋热管换热;火力威猛、热效率高;自身除尘脱硫;触火处设铸件、耐火耐高温材料;无焦油产生、无焦油蒸汽排放、无二次污染,降低黑烟排放等。锅炉系列产品已通过国家有关部门检测,各项环保性能均已达到并优于国家标准《GB13271-2001锅炉大气污染物排放标准》,及北京市地方标准《DB11/139-2002锅炉大气污染物排放》的要求,得到了社会各界及专家的认可和称赞。

  公司还根据不同地区的市场需求,在掌握国际国内高端技术的同时,潜心研发、攻克难关,发明创造、更新技术,完善产品设备,发挥企业机械加工制造能力强的优势,在新产品的开发上,突出一个“精”字,在高新技术应用上突出一个“新”字,按照国家产业政策和市场需求,努力做到生产一代,研制一代,储备一代。

  荣申达新能源研发的锅炉系列产品从北方燃煤地区大气污染的防治出发,不仅外形美观、结构紧凑,还打破了燃煤锅炉传统的结构设计和燃烧方式,采用正反对流燃烧和双层炉排燃烧技术,应用负压配氧燃烧原理,将变频技术和多回程烟管绕动等技术带入设计之中,达到自行消烟、脱硫、除尘的效果。其特点是热效率高,升温快,燃烧充分,烧烟煤不冒烟,灰渣少,省煤40%~50%,节能、环保、安全。结合现代微电子技术,在锅炉主机上附加了电脑设备,全自动恒温控制燃烧,无需专人值守看管,安全省工;适合洗浴中心、企业、宾馆、政府机关、学校、、花卉温室、住宅社区、私人别墅等场所取暖和洗浴使用。同时,煤种适应广泛,褐煤、烟煤、无烟煤、柴煤都适用。

  为了保证北方燃煤地区大气污染防治项目的顺利开展,公司还进行了充分的实验。如小型立式锅炉的消烟除尘问题一直以来都是一个严重问题,为了掌握第一手的实验数据与资料,席礼工程师带领技术人员对燃烧的过程进行了无数次的模型分析,用计算机CAD进行辅助设计,优化锅炉设计,分别进行了多台样机的多次实验,使得锅炉结构、燃烧方式、换热方式和配风方式均突破了传统模式,达到了预期效果,解决了气化燃烧稳定性、强化燃烧等多项问题。

  采用以上技术还具有如下优点:一、生物质能颗粒直接投入锅炉燃烧,可以不加任何添加剂,无需另行处理,操作简单,气化燃烧过程可使生物质能颗粒中可燃成分燃烧完全,具有较高的燃烧效率;消烟除尘效果显著,烟气黑度小于林格曼一级,烟尘排放浓度小于8mg/m3,SO2排放浓度小于0.5mg/m3,符合国家环保一类区Ⅱ时段标准。二、燃烧利用率高,锅炉热效率80%以上,有效节约能源。三、锅炉燃用可再生能源替代化石能源,燃烧一吨生物质能颗粒能替代二类烟煤0.8吨左右,替代柴油0.35吨左右,大大降低了化石能源燃烧造成的CO2排放,环保效益显著。四、废物的循环利用符合经济规律,生物质能颗粒燃烧后形成的灰分是优良的天然钾肥,回收后返回农田符合生态要求,有很好的经济社会效益。

  自2010年集中科技攻关北方燃煤地区大气污染的防治以来,公司三年内引进培养所需的高端专业技术人才6人、高层管理人才3人和高级技能人才3人。公司将遵循突出重点、重在使用、特事特办、统筹实施的原则,拟培养2名正高专业技术职称人员,具有国家学术地位、高级专业技术职称并取得博士学位或获得部级重大科技成果奖项;培养2名高端专业技术人才,拥有自主知识产权或掌握核心技术,成为公司资助产业和高新技术的学术或技术带头人;培养20名高级技能人才,能熟练掌握专门知识和技术,技能精湛并在实践中能够解决关键技术和工艺操作性难题,各自炼出一手绝技绝活,形成自主知识产权。必威 必威betway必威 必威betway